
Graduate Program in Science and Space Technologies (PG-CTE)
SPACE SYSTEMS, TESTING AND LAUNCHING (CTE-E)

SEQUENCES AND USE CASES
Prepared by Prof. Dr. Christopher Shneider Cerqueira

2025







4



Sequence Diagram
MODELING MESSAGE-BASED BEHAVIOR WITH INTERACTIONS – CHAPTER 10

https://developer.ibm.com/articles/the-sequence-diagram/ 

5

https://developer.ibm.com/articles/the-sequence-diagram/
https://developer.ibm.com/articles/the-sequence-diagram/
https://developer.ibm.com/articles/the-sequence-diagram/
https://developer.ibm.com/articles/the-sequence-diagram/
https://developer.ibm.com/articles/the-sequence-diagram/


• MSCs have long been used
in standardization and
industry for viewing
selected message traces. 

• Its simplicity and intuitive
understanding have made
notation quite popular.

Message Sequence Charts (MSC)

https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=z.120

6

https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=z.120
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=z.120
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=z.120


• Represent the interaction between elements in a 
model as a sequence of message exchanges.

• This representation of behavior is useful when 
modeling service-oriented concepts, when one part 
of a system requests services from another part. 

• A sequence diagram can be written as 
• a specification of how the parts of a system should 

interact, and it can also be used as a 

• record of how the parts of a system interact.

7

Introduction to Sequence Diagram



8

Example



• A sequence diagram represents an interaction.

• The full diagram header for a sequence diagram is as follows:

• sd [interaction] interaction name [diagram name]

• The diagram type for a sequence diagram is sd, and the type of model 
element that corresponds to your frame can only be Interaction.

Sequence Diagram

9



Lifelines

10



• The main structural feature of an interaction is the lifeline. A lifeline 
represents the relevant time of a property of the interaction's proprietary 
block.

• When a block performs an interaction, each lifeline denotes an instance of 
some part of the block.

• A lifeline is shown using a rectangle (the head) with a dashed line descending from its 
base (the tail). The header contains the name and type, if applicable, of the property 
represented, separated by a colon.

Lifelines

11



12



Messages / Events

13



• The entity that sends 
asynchronous messages 
continues to execute after 
the message is sent, 
however if a synchronous 
message is sent it must wait 
for the response from 
execution.
• An open arrowhead means 

an asynchronous message. 
• A closed arrowhead means a 

synchronous message.
• An arrowhead on a dashed 

line shows a response 
message. 

14

Messages



• When an interaction is executed, the set 
of time-ordered occurrences is called a 
trace. 

• A comparison of the order and structure 
of the actual occurrences determines 
whether the trace is consistent with the 
interaction. 

• Messages can be exchanged between 
entities. 

• A message can be sent from a timeline to 
itself to represent a message that is sent 
and received by the same entity. 

Event Sequence Description

15



Executions

• Receiving a message from 
a lifeline can trigger the 
execution of a behavior. 
• Activations are vertically 

overlapping rectangular 
symbols on lifelines.

16



Creation and destruction

• A create message represents the 
creation of an instance and is 
therefore the first occurrence on 
the timeline.

• A destroy message ends in a special 
type of occurrence called a 
destruction occurrence, which 
must be the last occurrence in a 
lifeline.

17



Representing time

• A time observation refers 
to an instant in time 
corresponding to the 
occurrence of some event 
during the execution of 
the interaction, and a 
duration observation 
refers to the time spent 
between two instants 
during the execution of 
the interaction. 

• A time constraint and a 
duration constraint can 
use observations to 
express constraints 
involving the values of 
those observations.

18



Fragments

19



• The most basic form of an interaction is a weak sequence of occurrences—
usually read from the top down of the sequence diagram. However, more 
complex patterns of interaction can be modeled using constructs called 
combined fragments.

• A combined fragment consists of an interaction operands and its 
operands. 
• An interaction operand defines a group of messages and cases that span one or 

more lines.

• Each operand has a guard containing a constraint expression that indicates the 
conditions under which it is valid for the operand to start execution.

20

Using fragments



• Seq - weak sequencing. Weak sequencing is the standard form of 
sequencing for all operands, it is rarely explicitly indicated.

• Par - an operator in which operands can occur in parallel. There is no 
implicit order between occurrences in different operands.

• Alt/else - an operator in which exactly one of its operands will be selected 
based on the value of its guard. The hold on each operand is evaluated 
before the selection, and if the hold on one of the operands is valid, it is 
selected.

• Opt - a unary operator that is equivalent to an ALT with only one operand. 
This implies that the operand is either executed or ignored, depending on 
the validity of the guard.

• Loop - an operator in which the trace represented by its operand repeats 
until its termination constraint is met. 

21

Basic interaction operators



22



• Alt and even operators have multiple partitions separated by dashed 
lines that correspond to their operands. 
• Other operators have only a single partition. Messages, activations, and possibly 

other fragments combined are nested in each operand. 

• Guards are shown in brackets superimposed on the line to which it is linked. 

• When an operator has a single operand that is a combined fragment, the 
frames of the operator and operand can be merged into one. 
• The merged frame label is used to indicate all operators, such as loop pair.

23

Note on alt, par e loop



Parallel

24



Alternatives

25



Optional

26



Loop

27



28

Complex Interactions



29

Reference to other timelines
• To support large-scale uses of 

interactions, an interaction 
might include an interaction 
usage that references an 
interaction described in 
another sequence diagram. 

• Interaction uses can be nested, 
because one referenced 
interaction can in turn 
reference another. 
• This feature significantly 

increases the scalability of 
interactions. 

• It also makes reuse easier, 
since an interaction can be 
used (i.e., referenced) by 
more than one using 
interaction. 



• Gates can be an easy way to 
model the passage of 
information between a 
sequence diagram and its 
context. 

• A gate is merely a message that is 
illustrated with one end 
connected to the edge of the 
sequence diagram frame and the 
other end connected to a lifeline.

Gates

30



• It is often useful to augment the representation by adding constraints on 
the required state of a lifeline at a given point in a sequence of hits. This 
can be achieved by using a state on a timeline. 

(Start) States

31



32



Use Case Diagrams
Modeling Functionality with Use Cases – Chapter 12

33



• Use cases describe the functionality of a system in terms of how it is used 
to achieve the goals of its various users. 

• The users of a system are described by actors, who can represent external 
systems or humans interacting with the system.

• Model the high-level functionality of a system with use cases.

Introduction

34



• Use cases have been seen as a mechanism to capture the requirements of 
the system in terms of system uses.

• Different methodologies apply use cases in different ways: 
• For example, some methods require a text description for each case, which may 

include pre- and post-conditions and primary, alternate, and exceptional flows. 

• Use cases are often elaborated with detailed descriptions of their behavior, using 
activities, interactions, and/or state machines.

Introduction

35



• In a use case diagram, the frame corresponds to a package, model, model 
library, or block, and the contents of the diagram describe a set of actors 
and use cases and the relationships between them. 

• The full diagram header for a use case diagram is as follows:
• uc [model element kind] model element name [diagram 

name]

The Use Case Diagram

36



37



Actor (or stakeholders?)

38



• An actor is the “entity” to play the role of a human being, an organization, 
or any external system that participates in the use of some system. 

• Actors can interact directly with the system or indirectly through 
other actors.

• It should be noted that "actor" is an umbrella term.
• An actor that is external to one system may be internal to another.

Definition of actor

39



• An actor is shown as a strawman with the 
actor's name underneath or as a rectangle 
containing the actor's name below the 
keyword «actor». 

• The choice of symbol depends on the tool 
and the method being used.

Actors

40



• The actor's rating is represented 
using the standard SysML 
generalization symbol - a line with an 
empty triangle at the general end.

• Actors can be sorted using the 
standard generalization ratio. 

• The actor rating has a similar 
meaning to the rating of other 
classifiable model elements. 
• For example, a specialized actor 

participates in all the use cases in which 
the more general actor participates.

Classification: Generalization/Specialization

41



A use case

42



• A use case describes the goals of a system from the perspective of the 
system's users. 

• The objectives are described in terms of the functionality that the system 
must support.

• Typically, the use case identifies the use case purpose(s), a primary usage 
pattern, and several alternative uses (variants).

Use Cases

43



• The system that provides functionality in support of use cases is called a 
System under Consideration and usually represents a system that is being 
developed.

• The system under consideration is sometimes called the subject and is 
represented by a block.

Use Cases - System

44



• A use case can encompass one or more scenarios that correspond to how 
the system interacts with its actors in different circumstances.

Use Cases - Scenarios

45



• The actors are related to the use cases of communication paths, which are 
represented as associations, with some restrictions. 

• Membership ends can have multiplicities, where multiplicity at the actor's 
end describes the number of actors involved in each use case.

Use Cases – Actor Relationship

46



• A use case is shown as an ellipse with the name of the use case inside it. 

• Associations between actors and use cases are shown using standard 
association notation. 

• The subject of a set of use cases can be shown as a rectangle wrapping 
around the use cases, with the subject name centered at the top.

Use cases graphically:

47



48



Relationships Between Use Cases

49



50



• The include relationship allows a use case, known as the base use case, to 
include the functionality of another use case, called the included use 
case.

• The included use case always runs when the base use case runs.

• It is implicit in the definition of inclusion that any participant in a base use 
case can participate in an included use case, so an actor associated with a 
base use case does not need to be explicitly associated with any included 
use case.

Inclusive relationship

51



52



• The included use cases are not intended to represent a functional 
breakdown of the base use case, but rather to describe common 
functionality that can be included by other use cases. 

• In a functional decomposition, the lower-level functions represent a 
complete decomposition of the higher-level function. On the other hand, a 
base use case and its included use cases often describe different aspects of 
the required functionality.

Subtle observation: it is not functional
decomposition!!

53



• A use case can also extend a base use case by using the extension 
relationship. 

• The extended use case is a fragment of functionality that is not considered
part of the functionality of the base use case. 

• It often describes some exceptional behavior in the interaction, such as 
error handling between the subject and the actors that do not directly 
contribute to the goal of the base use case

Extension relationship

54



• Unlike an included use case, the base use case does not rely on an 
extended use case. 

• However, an extended use case may depend on what's happening in your 
basic use case; 
• For example, the extended use case might assume that some exceptional 

circumstance in the base use case arose.

• There is no implication that an actor associated with the base use case 
participates in the extended use case, and the extended use case may in 
fact have entirely different participants.

Extension does not generate dependency

55



56



• Inclusion and extension are shown using dashed lines with an open 
arrowhead at the included and extended ends, respectively. 

• An include line has the keyword «include» and an extension line has the 
keyword «extend». 

• The direction of the arrows should be read as the rear end includes or 
extends the end of the head.

• Thus, 
• a basic use case includes an included use case, and 

• an extended use case extends a basic use case.

About relationship graphical representation

57



• Use cases can be classified using the standard SysML generalization ratio. 

• One implication, for example, is that the scenarios for the general use case 
are also scenarios for the specialized use case. 
• This also means that actors associated with a general use case can also participate 

in scenarios described by a specialized use case. 

• Classification of use cases is shown using the standard SysML 
generalization symbol.

Classification (heritage) Relationship

58



59



• A text-based use case description can be used to provide additional 
information to support the use case definition. 

• This description can contribute significantly to the value of the use case. 

• Description text can be captured in the template as a single or multiple 
comments. You can also treat each step in a use case description as a 
SysML requirement.

Textual description of use cases

60



• Pre-conditions - The conditions for the use case to begin.

• Post-conditions - the conditions after the completion of the use case.

• Primary flow - The most frequent scenario or scenarios of the use case.

• Alternate and/or exception flows - the least frequent or non-nominal 
scenarios. Exception flows can reference extension points and often 
represent flows that don't directly support the goals of the primary flow.

A typical use case description might include the 
following fields

61



62


	Default Section
	Slide 1: Sequences and use cases
	Slide 2
	Slide 3

	Sequence Diagram
	Slide 4
	Slide 5: Sequence Diagram
	Slide 6: Message Sequence Charts (MSC)
	Slide 7: Introduction to Sequence Diagram
	Slide 8: Example
	Slide 9: Sequence Diagram
	Slide 10: Lifelines
	Slide 11: Lifelines
	Slide 12
	Slide 13: Messages / Events
	Slide 14: Messages
	Slide 15: Event Sequence Description
	Slide 16: Executions
	Slide 17: Creation and destruction
	Slide 18: Representing time
	Slide 19: Fragments
	Slide 20: Using fragments
	Slide 21: Basic interaction operators
	Slide 22
	Slide 23: Note on alt, par e loop
	Slide 24: Parallel
	Slide 25: Alternatives
	Slide 26: Optional
	Slide 27: Loop
	Slide 28: Complex Interactions
	Slide 29: Reference to other timelines
	Slide 30: Gates
	Slide 31: (Start) States

	Use Case Diagram
	Slide 32
	Slide 33: Use Case Diagrams
	Slide 34: Introduction
	Slide 35: Introduction
	Slide 36: The Use Case Diagram
	Slide 37
	Slide 38: Actor (or stakeholders?)
	Slide 39: Definition of actor
	Slide 40: Actors
	Slide 41: Classification: Generalization/Specialization
	Slide 42: A use case
	Slide 43: Use Cases
	Slide 44: Use Cases - System
	Slide 45: Use Cases - Scenarios
	Slide 46: Use Cases – Actor Relationship
	Slide 47: Use cases graphically:
	Slide 48
	Slide 49: Relationships Between Use Cases
	Slide 50
	Slide 51: Inclusive relationship
	Slide 52
	Slide 53: Subtle observation: it is not functional decomposition!!
	Slide 54: Extension relationship
	Slide 55: Extension does not generate dependency
	Slide 56
	Slide 57: About relationship graphical representation
	Slide 58: Classification (heritage) Relationship
	Slide 59
	Slide 60: Textual description of use cases
	Slide 61: A typical use case description might include the following fields
	Slide 62


