4
llll

el

iy
tj/j'l]\

SN

Graduate Program in Science and Space Technologies (PG-CTE)
SPACE SYSTEMS, TESTING AND LAUNCHING (CTE-E)

SEQUENCES AND USE CASES

Prepared by Prof. Dr. Christopher Shneider Cerqueira
2025

wy

WEEK

CLASS ACTIVITY

REF INDIVIDUAL W

GROUP

1

Course Structure and Initial Definitions

Systems Engineering Heview

Questions (10)

1ima

0%

Classical Systems Engineering Diagrams
(IDEF-0/M2/eFFBD/DFD)

[4]

representation of your system
using classical Diagrams

504

3

Transition from Legacy to MBSE
MBZE Methodologies

[517]

OPM - Basic

0155=n

QOPM - Extended

[6]

OPM - Group Presentation

56 - Prepare a presentation of

ir
; your system using QP+

50%

SysMLIntroduction
(bddfibd)

P1- Conceptual Questions and Case

[112](3][4]
[E] case

14-08 - Questions and a mini-

100%

WEEK CLASS ACTIVITY REF INDIVIDUAL W GROUP W

9| SysML
[act/stm)

10 |SysML 71

sawct| [segiuc) l4-10 - Exercises 14 GA-10 - 0%

11 |Simulation on SysML

1350ct 1A-11 - F4 GA-11 - 0%
12 |SysML [7]

20:0ct| (pkgfreq) 1A-12 - Exercises 1044 GA-12 - 0%

210t
13 |Arcadia process applied into the SysML [5]

0 A-13 - {r4 GA-13 - 0%
14 |Some System Analysis on SysML [8]

wuo| SysMLV2 Perspectives [A-14 - 0t GA-14 - 0%

15|5ysML Group Presentation
GA-15 - Prepare a presentation

1oy [A-15 - (% 100%
- of your system using SysML -

Course Ending

16 |F2 - Conceptual Questions and Case 51071 o _ P
- Quest
o o Cjuestions and a mini- 0% GA-16-
100% 100%
EXAM
2z If necessary: Writing an article (min 6pgs / max 10pgs) reporting the case of their group in the SIGE standard. 100%

aader

e

SysML
Diagram
A\
Package Requirement Behavior Parametric Structure
Diagram Diagram Diagram Diagram Diagram
. State Block Internal
Activity || Sequence | | y1ochine | | US€ €358 | | pefinition | | Block
Diagram Diagram : Diagram . .
Diagram Diagram Diagram
FIGURE 3.1

SysML diagram taxonomy.

Sequence Diagram

MODELING MESSAGE-BASED BEHAVIOR WITH INTERACTIONS — CHAPTER 10

https://developer.ibm.com/articles/the-sequence-diagram/

https://developer.ibm.com/articles/the-sequence-diagram/
https://developer.ibm.com/articles/the-sequence-diagram/
https://developer.ibm.com/articles/the-sequence-diagram/
https://developer.ibm.com/articles/the-sequence-diagram/
https://developer.ibm.com/articles/the-sequence-diagram/

Message Sequence Charts (MSC)

* MISCs have long been used
in standardization and
industry for viewing
selected message traces.

* Its simplicity and intuitive
understanding have made
notation quite popular.

msc event ordering

proc a proc b proc ¢
| [] |
ml b
m3 -
<—m4
] | |

(a)

Rec. ITU-T Z.120 (02/2011)

in(ml)

\j
out(m2y——— P> in(m2)
v
out(m3) —® in(m3)
\J \/
in(m4)« out(m4)
(b)

Figure 6 — Message Sequence Chart and corresponding connectivity graph

https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=z.120

https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=z.120
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=z.120
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=z.120

Introduction to Sequence Diagram

* Represent the interaction between elements in a
model as a sequence of message exchanges.

* This representation of behavior is usefu
modeling service-oriented concepts, w
of a system requests services from anot

* A sequence diagram can be written as

when
nen one part

ner part.

* a specification of how the parts of a system should

interact, and it can also be used as a

* record of how the parts of a system interact.

2020 i MAY

Example

sd Handling Aley

security guard [Elvis] : Advanced Operator || company security system : Surveillance System

lllegal Entry Detected (id= sensor id)

1
|
|

Intruder Alert (sensor id)

¥

Raise Alarm()
L]

|
alt J {automatic mode [
required) Auto Track() !

T1

opt | {lost contact}

Lost Track U
[
____________________________________ i —

{manual mode l
required} :
loop par J Pan Camera(strength) J
)

e |-
Tilt Camera(strength) |
e |
[
I
Cancel Alert() |

’L Cancel Alarm()

T [

FIGURE 10.1

An example sequence diagram.

Sequence Diagram

* A sequence diagram represents an interaction.
* The full diagram header for a sequence diagram is as follows:

*sd [1nteraction] 1nteraction name [dlagram name]

* The diagram type for a sequence diagram is sd, and the type of model
element that corresponds to your frame can only be Interaction.

10

Lifelines

Lifelines

e The main structural feature of an interaction is the lifeline. A lifeline

represents the relevant time of a property of the interaction's proprietary
block.

* When a block performs an interaction, each lifeline denotes an instance of
some part of the block.

12

sd Camera Control [Lifelinesﬂ

security guard[Elvis] : Advanced Operator —x-

company security system : Surveillance System

FIGURE 10.3

An interaction with lifelines.

13

Messages / Events

Messages

sd Camera Control [Simple Sequence])

* The entity that sends
asynchronous messages security guard [Elvis] : Advanced Operator % | | company security syster:SurveillanceSystem
. select camera(camera id = "CCC1")
continues to execute after
the message is sent,
however if a synchronous

get current status()

get status

P (camera id = "CCC1")

1]

mesSage Is sent it must wait oo getcurrent status():"OK* g
for the response from pan camera(strength = 2) :
exe Cu t i O n o get current status() |
get status

o (camera id = "CCC1")

|
|
|
* An open arrowhead means :
an asynchronous message. |

get current status():"Moving” i
* A closed arrowhead means a r --- *|
synchronous message. | |
* An arrowhead on a dashed FIGURE 10.5
Iine ShOWS dres pOnse Synchronous and asynchronous messages exchanged between lifelines.

MmeSssage.
14

Event Sequence Description

* When an interaction is executed, the set
of time-ordered occurrences is called a
trace.

A comparison of the order and structure
of the actual occurrences determines
whether the trace is consistent with the
Interaction.

* Messages can be exchanged between
entities.

* A message can be sent from a timeline to
itself to represent a message that is sent
and received by the same entity.

sd Ordering an Automobilty

: Dealer =%

Order("GSX")

: Manufacturing Plant

| |
| |
| Automobile Delivered ‘
| |
| |

Executions

sd Camera Control [Simple Sequence with ﬁnctivaticrns]/l

security guard [Elvis] : Advanced Operator %- | | company security system : Surveillance System

] select camera(camera id ="CCC1") I

* Receiving a message from 3 J
a lifeline can trigger the { curenieamen s cmen e
. - get current status()
execution of a behavior. et siaws

(current camera)

I_.n

* Activations are vertically I
overlapping rectangular .

get current status():"OK"

symbols on lifelines. S -) — -

pan camera(strength ="2")

get status():"OK"

r

get current status()

B

get status
{current camera)

E get status():"Moving"
{‘_’. _____

get current status():"Moving”

S -

FIGURE 10.7

Lifelines with activations.

16

Creation and destruction

A create message represents the

creation of an instance and is 54 Routs Warensrce]
therefore the first occurrence on et g e L otroue: nove
the timeline. 2‘?‘1"_r.‘?%‘?_?_c_“?:;‘?ff{“_‘??i\%""'(‘1‘0';5;)"% nese roctn: Rt |
: : T g
* A destroy message ends in a special | Tmm—

type of occurrence called a v o120 |
destruction occurrence, which |

I

I

|

|

|

|

|

I

I

I

I

|

|

I

|

|

|
"
PN

must be the last occurrence in a e |
lifeline. L

\
\
- ‘
\

FIGURE 10.8

Create and destroy messages.

17

18

Representing time

* A time observation refers

to an instant in time
corresponding to the

occurrence of some event

during the execution of
the interaction, and a
duration observation
refers to the time spent
between two instants
during the execution of
the interaction.

A time constraint and a
duration constraint can
use observations to
express constraints
involving the values of
those observations.

sd Successful Camera Test)

user interface : Ul

: Monitoring Station

I test cameras() |t = nhow

Test in Progress(1)

[c1] : Camera

[c2] : Camera

perform self test()

[

I

I I

I I

ko I

t+1..t+2

l camera test complete { } !

: (OK = true) | :

L Test Complete(1, true) d = duration : :

:_-::? I [I

e : Test in Progress(2) l :
- I{ perform self test() |
| camera test complete !
I (OK = true) |

[I

L Test Complete(2, true) {d..d"1.5} : :

| System OK | !

y ke I |

| I |

[[I

| || | |

I I [I

FIGURE 10.10

Representing time on a sequence diagram.

19

Fragments

Using fragments

* The most basic form of an interaction is a weak sequence of occurrences—
usually read from the top down of the sequence diagram. However, more
complex patterns of interaction can be modeled using constructs called
combined fragments.

* A combined fragment consists of an interaction operands and its
operands.

* An interaction operand defines a group of messages and cases that span one or
more lines.

* Each operand has a guard containing a constraint expression that indicates the
conditions under which it is valid for the operand to start execution.

Basic interaction operators

* Seq - weak sequencing. Weak sequencing is the standard form of
sequencing for all operands, it is rarely explicitly indicated.

* Par - an operator in which operands can occur in parallel. There is no
implicit order between occurrences in different operands.

* Alt/else - an operator in which exactly one of its operands will be selected
based on the value of its guard. The hold on each operand is evaluated
before the selection, and if the hold on one of the operands is valid, it is

selected.

* Opt - a unary operator that is equivalent to an ALT with only one operand.
This implies that the operand is either executed or ignored, depending on
the validity of the guard.

* Loop - an operator in which the trace represented by its operand repeats
until its termination constraint is met.

22

FIGURE 10.11

lifeline 1 lifeline 2 lifeline 3 lifeline 4
[I I I
I | I I
opt | | | I |
I msg 1| | |
~ I I I
| < msg 2 | |
I | I |
i i i I
loop | : :
! msg 3 J
| =
I |
| |
| I
| |

Example of overlapping and nonoverlapping lifelines.

Note on alt, par e loop

 Alt and even operators have multiple partitions separated by dashed
lines that correspond to their operands.

e Other operators have only a single partition. Messages, activations, and possibly
other fragments combined are nested in each operand.

* When an operator has a single operand that is a combined fragment, the
frames of the operator and operand can be merged into one.

24

Parallel

hungryPerson : Person

cookFood ()

oven . MicrowaveQven

nukeFood {)

rotateFood ()

T

25

Alternatives

bank : Bank

theCheck : Check

|

_b_h

getamount ()

account : Checkingécco

|
l
I
l

amount

getBalance {)]

|

balancp

< """""""""""" AR L e e e e e e e e e e e

alt

[balance == amount]

I

T

addDebitTransactjon { check
Number , amoynt)

storePhotoOfChecK (theCheck)

noteReturnedCheck (theCheck)

returnCheck (theCILeck)

O pti O n a | register : RegisterOffice ar_: AccountsReceivable drama : Class
| | l
| | |

| |

| |

getPastDueBalance (studentid) |

pastDueBalance l

S e L L e L L L e PP P e |

.°p.t J |

[pastDueBalance = 0] l
addStudent (studentld)

getCostOfClass ()

classCost
w [|

chargeForClass {) i

26

27

analyst : FinancialAnalyst

systemn © ReportingSystern

secSystem : SecuritySystemn

: Reports

availableReports : Reports

reportsEnu : Reports

aReport : Report

getAvailableReports {3

.

getSecurityClearance (userIuI:J_h]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

getRequ

redsecurityLevel {)

[| | -
| hasanotherReport m
‘:" """""""""""""""" 1 e
loap | | |
hasanotherReport = true] | | |
getNextRepcfrt() | |
I 1 L
| aReport | u

[userClearancelevel = required
Level] add { aReport)

avallableReparts

=

28

Complex Interactions

sd Handling Alert |

lsecurity guard [Elvis] : Advanced Operator

ﬁ:‘ ‘ company security system : Surveillance System

lllegal Entry Detected (id=sensor id)

Intruder Alert (sensor id)

Raise Alarm()

thj {automatic mode
required}

Auto Track()

L

| opt |

Lost Track

{lost contact}

Cancel Alarm()

_____________________________________ 1---
{manual mode |
required} |

I |
loop par J Pan Camera(strength) |
=
I
e | o |_ -
Tilt Cameraistrength) |
“'I
I
I
Cancel Alert() |
T L
1

FIGURE 10.12

Complex interactions described using interaction operators.

29

Reference to other timelines

To support large-scale uses of
interactions, an interaction
might include an interaction
usage that references an
interaction described in
another sequence diagram.

Interaction uses can be nested,

because one referenced
interaction can in turn
reference another.

e This feature significantly

increases the scalability of
interactions.

* |t also makes reuse easier,
since an interaction can be

used (i.e., referenced) by
more than one using
interaction.

sd End-to-End Scenarin:u)

[gatel] : Parimeter Sansor

sacurity guard[Elvis] ;?:
- Advanced Oparator

- Surveillanca System

company security system

I
I

Salup System

T
{normal status}

Route Maintanance

{alart stabus}

: Alarm Systam
raf During Alert

Raise Alarmi)

Handling Alert

rh

Shutdown Systam

Cancel Alarmi)

_— YN =

FIGURE 10.15

Reference to another interaction.

y — — ————— e S—
%E 1[qust ; Customer teller { ATM herfank Bank
withdrawCash (accountNumber | ! T
ates =] '
,. -—

| w
I N —— Balance Lookup(accountNumber)
% batrco “"':“'

* Gates can be an easy way to { | '
model the passage of E] A
information between a T | |
sequence diagram and its r T |
context. T——

* A gate is merely a message that is
illustrated with one end s —] |
connected to the edge of the el i i
sequence diagram frame and the | P————— l
other end connected to a lifeline. e R ﬁj E

getBalarce () "

O | il

b | | ,

| l |

30 l I l

(Start) States

* It is often useful to augment the representation by adding constraints on
the required state of a lifeline at a given point in a sequence of hits. This
can be achieved by using a state on a timeline.

sd Shutdown System)

security guard [Elvis] : Advanced Operator % company security system : Surveillance System
[I

|
Logged On |
I
I

Shutdown System .
1]

I
I
I
| {number of
|
|

Shutdown System(’ok’) U

FIGURE 10.14

31 State invariants.

e

32

SysML
Diagram
A\
Package Requirement Behavior Parametric Structure
Diagram Diagram Diagram Diagram Diagram
. State Block Internal
Activity || Sequence | | y1ochine | | US€ €358 | | pefinition | | Block
Diagram Diagram : Diagram . .
Diagram Diagram Diagram
FIGURE 3.1

SysML diagram taxonomy.

33

Use Case Diagrams

Modeling Functionality with Use Cases — Chapter 12

y

Introduction

e Use cases describe the functionality of a system in terms of how it is used
to achieve the goals of its various users.

* The users of a system are described by actors, who can represent external
systems or humans interacting with the system.

 Model the high-level functionality of a system with use cases.

34

Introduction

* Use cases have been seen as a mechanism to capture the requirements of
the system in terms of system uses.

 Different methodologies apply use cases in different ways:

* For example, some methods require a text description for each case, which may
include pre- and post-conditions and primary, alternate, and exceptional flows.

e Use cases are often elaborated with detailed descriptions of their behavior, using
activities, interactions, and/or state machines.

The Use Case Diagram

* In a use case diagram, the frame corresponds to a package, model, model
library, or block, and the contents of the diagram describe a set of actors
and use cases and the relationships between them.

* The full diagram header for a use case diagram is as follows:

* uc [model element kind] model element name [diagram
name]

37

uc [Package] Use Cases [Main Use Case])

Surveillance System

% 1.* @r Enviro@

0.* %

Operator Intruder
«actor»
Emergency
Services
FIGURE 12.1

Example use case diagram.

38

Actor (or stakeholders?)

Definition of actor

* An actor is the “entity” to play the role of a human being, an organization,
or any external system that participates in the use of some system.

e Actors can interact directly with the system or indirectly through
other actors.

* [t should be noted that "actor" is an umbrella term.
* An actor that is external to one system may be internal to another.

39

Actors

 An actor is shown as a strawman with the
actor's name underneath or as a rectangle ~

containing the actor's name below the e
keyword «actor». ActorName

ActorName

 The choice of symbol depends on the tool
and the method being used.

40

Classification: Generalization/Specialization

* The actor's rating is represented T —r—
using the standard SysML S 5
generalization symbol - a line with an e
empty triangle at the general end. Emergeny
X =

FIGURE 12.2

o The actor rating has a Similar Representing actors and their interrelationships on a use case diagram.
meaning to the rating of other
classifiable model elements.

e For example, a specialized actor
participates in all the use cases in which
the more general actor participates.

42

A use case

Use Cases

* A use case describes the goals of a system from the perspective of the
system's users.

* The objectives are described in terms of the functionality that the system
must support.

* Typically, the use case identifies the use case purpose(s), a primary usage
pattern, and several alternative uses (variants).

43

Use Cases - System

* The system that provides functionality in support of use cases is called a
System under Consideration and usually represents a system that is being
developed.

* The system under consideration is sometimes called the subject and is
represented by a block.

Use Cases - Scenarios

* A use case can encompass one or more scenarios that correspond to how
the system interacts with its actors in different circumstances.

Use Cases — Actor Relationship

* The actors are related to the use cases of communication paths, which are
represented as associations, with some restrictions.

* Membership ends can have multiplicities, where multiplicity at the actor's
end describes the number of actors involved in each use case.

Use cases graphically:

* A use case is shown as an ellipse with the name of the use case inside it.

* Associations between actors and use cases are shown using standard
association notation.

* The subject of a set of use cases can be shown as a rectangle wrapping
around the use cases, with the subject name centered at the top.

48

uc [Package] Use Cases [Main Use Case])

Surveillance System

% 1.* @r Enviro@

0.* %

Operator Intruder
«actor»
Emergency
Services
FIGURE 12.3

A use case and the actors that participate in it.

49

Relationships Between Use Cases

y

50

uc [Package] Use Cases [Complete])

Surveillance System

Supervisor «extend» | __--""

|
A4

-

Monitor Environment

extension point: Fault

Condition: {camera fault detected} %

-

-
-

% Handle Camera Fault) -7
. 0.7 %
/

Intruder

extension points
Fault

. -
«include» .~
//

~ -
S \«lnclude»

N

ﬁ 1.7
) Manually Monitor
Advanced Operator Environment

Automatically Monito
Environment

Operator

FIGURE 12.4

A set of use cases for the Surveillance System.

Inclusive relationship

* The include relationship allows a use case, known as the base use case, to
include the functionality of another use case, called the included use
case.

* The included use case always runs when the base use case runs.

* |t is implicit in the definition of inclusion that any participant in a base use
case can participate in an included use case, so an actor associated with a
base use case does not need to be explicitly associated with any included
use case.

y

52

uc [Package] Use Cases [Complete])

Surveillance System

Supervisor «extend» | __--""

|
A4

-

Monitor Environment

extension point: Fault

Condition: {camera fault detected} %

-

-
-

% Handle Camera Fault) -7
. 0.7 %
/

Intruder

extension points
Fault

. -
«include» .~
//

~ -
S \«lnclude»

N

ﬁ 1.7
) Manually Monitor
Advanced Operator Environment

Automatically Monito
Environment

Operator

FIGURE 12.4

A set of use cases for the Surveillance System.

" Subtle observation: it is not functional
decomposition!!

* The included use cases are not intended to represent a functional
breakdown of the base use case, but rather to describe common
functionality that can be included by other use cases.

* In a functional decomposition, the lower-level functions represent a
complete decomposition of the higher-level function. On the other hand, a
base use case and its included use cases often describe different aspects of
the required functionality.

53

Extension relationship

* A use case can also extend a base use case by using the extension
relationship.

* The extended use case is a fragment of functionality that is not considered
part of the functionality of the base use case.

* |t often describes some exceptional behavior in the interaction, such as
error handling between the subject and the actors that do not directly
contribute to the goal of the base use case

Extension does not generate dependency

 Unlike an included use case, the base use case does not rely on an
extended use case.

 However, an extended use case may depend on what's happening in your
basic use case;

* For example, the extended use case might assume that some exceptional
circumstance in the base use case arose.

* There is no implication that an actor associated with the base use case
participates in the extended use case, and the extended use case may in
fact have entirely different participants.

y

56

uc [Package] Use Cases [Complete])

Surveillance System

Supervisor «extend» | __--""

|
A4

-

Monitor Environment

extension point: Fault

Condition: {camera fault detected} %

-

-
-

% Handle Camera Fault) -7
. 0.7 %
/

Intruder

extension points
Fault

. -
«include» .~
//

~ -
S \«lnclude»

N

ﬁ 1.7
) Manually Monitor
Advanced Operator Environment

Automatically Monito
Environment

Operator

FIGURE 12.4

A set of use cases for the Surveillance System.

About relationship graphical representation

* Inclusion and extension are shown using dashed lines with an open
arrowhead at the included and extended ends, respectively.

* An include line has the keyword «include» and an extension line has the
keyword «extend».

 The direction of the arrows should be read as the rear end includes or
extends the end of the head.

* Thus,

e a basic use case includes an included use case, and
e an extended use case extends a basic use case.

Classification (heritage) Relationship

e Use cases can be classified using the standard SysML generalization ratio.

* One implication, for example, is that the scenarios for the general use case
are also scenarios for the specialized use case.
* This also means that actors associated with a general use case can also participate
in scenarios described by a specialized use case.
 Classification of use cases is shown using the standard SysML
generalization symbol.

59

uc [Package] Use Cases [Complete])

Surveillance System

Supervisor «extend» | __--""

|
A4

-

Monitor Environment

extension point: Fault

Condition: {camera fault detected} %

-

-
-

% Handle Camera Fault) -7
. 0.7 %
/

Intruder

extension points
Fault

. -
«include» .~
//

~ -
S \«lnclude»

N

ﬁ 1.7
) Manually Monitor
Advanced Operator Environment

Automatically Monito
Environment

Operator

FIGURE 12.4

A set of use cases for the Surveillance System.

Textual description of use cases

* A text-based use case description can be used to provide additional
information to support the use case definition.

* This description can contribute significantly to the value of the use case.

* Description text can be captured in the template as a single or multiple
comments. You can also treat each step in a use case description as a
SysML requirement.

60

*¥ Atypical use case description might include the
following fields

* Pre-conditions - The conditions for the use case to begin.
* Post-conditions - the conditions after the completion of the use case.
* Primary flow - The most frequent scenario or scenarios of the use case.

» Alternate and/or exception flows - the least frequent or non-nominal
scenarios. Exception flows can reference extension points and often
represent flows that don't directly support the goals of the primary flow.

62

Here is an extract from the use case description for Monitor Environment:

Pre-condition

The Surveillance System is powered down.

Primary Flow

The Operator or Operators will use the Surveillance System to monitor the environment of the
facility under surveillance. An Operator will initialize the system (see Initialize System) before oper-
ation and shut the system down (see Shutdown System). During normal operation, the system’s cam-
eras will automatically follow preset routes that have been set to optimize the likelihood of
detection.

If an Intruder is detected, an alarm will be raised both internally and with a central monitoring sta-
tion, whose responsibility it is to summon any required assistance. If available, an intelligent intruder
tracking system—which will override the standard camera search paths—will be engaged at this point
to track the suspected intruder. If an intelligent intruder tracking system is not available, the Operators
are expected to maintain visual track of the suspected intruder and pass this knowledge on to the Emer-
gency Services if and when they arrive.

Alternate Flow

Immediately after system initialization but before normal operation begins, it is possible that a fault will
arise, in which case it can be handled (c.f. Fault extension point), but faults will not be handled thereafter.

Post-condition

The Surveillance System is powered down.

	Default Section
	Slide 1: Sequences and use cases
	Slide 2
	Slide 3

	Sequence Diagram
	Slide 4
	Slide 5: Sequence Diagram
	Slide 6: Message Sequence Charts (MSC)
	Slide 7: Introduction to Sequence Diagram
	Slide 8: Example
	Slide 9: Sequence Diagram
	Slide 10: Lifelines
	Slide 11: Lifelines
	Slide 12
	Slide 13: Messages / Events
	Slide 14: Messages
	Slide 15: Event Sequence Description
	Slide 16: Executions
	Slide 17: Creation and destruction
	Slide 18: Representing time
	Slide 19: Fragments
	Slide 20: Using fragments
	Slide 21: Basic interaction operators
	Slide 22
	Slide 23: Note on alt, par e loop
	Slide 24: Parallel
	Slide 25: Alternatives
	Slide 26: Optional
	Slide 27: Loop
	Slide 28: Complex Interactions
	Slide 29: Reference to other timelines
	Slide 30: Gates
	Slide 31: (Start) States

	Use Case Diagram
	Slide 32
	Slide 33: Use Case Diagrams
	Slide 34: Introduction
	Slide 35: Introduction
	Slide 36: The Use Case Diagram
	Slide 37
	Slide 38: Actor (or stakeholders?)
	Slide 39: Definition of actor
	Slide 40: Actors
	Slide 41: Classification: Generalization/Specialization
	Slide 42: A use case
	Slide 43: Use Cases
	Slide 44: Use Cases - System
	Slide 45: Use Cases - Scenarios
	Slide 46: Use Cases – Actor Relationship
	Slide 47: Use cases graphically:
	Slide 48
	Slide 49: Relationships Between Use Cases
	Slide 50
	Slide 51: Inclusive relationship
	Slide 52
	Slide 53: Subtle observation: it is not functional decomposition!!
	Slide 54: Extension relationship
	Slide 55: Extension does not generate dependency
	Slide 56
	Slide 57: About relationship graphical representation
	Slide 58: Classification (heritage) Relationship
	Slide 59
	Slide 60: Textual description of use cases
	Slide 61: A typical use case description might include the following fields
	Slide 62

