
Graduate Program in Science and Space Technologies (PG-CTE)
SPACE SYSTEMS, TESTING AND LAUNCHING (CTE-E)

SYSTEMS ENGINEERING (SUPER
SHORT) REVIEW

Prof. Dr. Christopher Shneider Cerqueira

2025

Context

2

At the beginning there was only chaos

• At the beginning there was only Chaos,
Night, dark Erebus, and deep Tartarus.
Earth, the air and heaven had no existence.
[695] Firstly, blackwinged Night laid a germless egg in the
bosom of the infinite deeps of Erebus, and from this, after
the revolution of long ages, sprang the graceful Eros with
his glittering golden wings, swift as the whirlwinds of the
tempest. He mated in deep Tartarus with dark Chaos,
winged like himself, and thus hatched forth our race,
which was the first to see the light. [700] That of the
Immortals did not exist until Eros had brought together all
the ingredients of the world, and from their marriage
Heaven, Ocean, Earth and the imperishable race of
blessed gods sprang into being. Thus our origin is very
much older than that of the dwellers in Olympus. We are
the offspring of Eros; there are a thousand proofs to show
it. We have wings and we lend assistance to lovers. [705]
How many handsome youths, who had sworn to remain
insensible, have opened their thighs because of our power
and have yielded themselves to their lovers when almost
at the end of their youth, being led away by the gift of a
quail, a waterfowl, a goose, or a cock.

3 Chaos (cosmogony) - Wikipedia Aristophanes, Birds, line 685 (tufts.edu)

https://en.wikipedia.org/wiki/Chaos_(cosmogony)
https://en.wikipedia.org/wiki/Chaos_(cosmogony)
https://en.wikipedia.org/wiki/Chaos_(cosmogony)
http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.01.0026%3Acard%3D685

We started to understand the chaos

4 https://doi.org/10.1590/S0103-40142006000300022

https://doi.org/10.1590/S0103-40142006000300022
https://doi.org/10.1590/S0103-40142006000300022
https://doi.org/10.1590/S0103-40142006000300022

• Complex systems are networks made of a number of components that
interact with each other, typically in a nonlinear fashion. Complex
systems may arise and evolve through self-organization, such that they
are neither completely regular nor completely random, permitting the
development of emergent behavior at macroscopic scales.

5

Complex systems

6

The growth of complexity in systems

https://doi.org/10.4271/12-03-02-0011

https://doi.org/10.4271/12-03-02-0011
https://doi.org/10.4271/12-03-02-0011
https://doi.org/10.4271/12-03-02-0011
https://doi.org/10.4271/12-03-02-0011
https://doi.org/10.4271/12-03-02-0011
https://doi.org/10.4271/12-03-02-0011
https://doi.org/10.4271/12-03-02-0011

7

https://ioannouolga.blog/2017/09/14/complexity-theory-ii-m-woermann/

https://www.youtube.com/watch?v=atMdf0rhbpI

Ending scene from 1971 movie THX 1138

Some definitions

Systems thinking

Systems Thinking and Systems Science RA - Systems Thinking - SEBoK (sebokwiki.org)

Concepts of Systems
Thinking - SEBoK
(sebokwiki.org)

Principles of Systems
Thinking - SEBoK
(sebokwiki.org)

9

https://www.sebokwiki.org/wiki/Systems_Thinking#/media/File:Fig2_Systems_Thinking_and_Systems_Science_RA.png
https://www.sebokwiki.org/wiki/Systems_Thinking#/media/File:Fig2_Systems_Thinking_and_Systems_Science_RA.png
https://www.sebokwiki.org/wiki/Systems_Thinking#/media/File:Fig2_Systems_Thinking_and_Systems_Science_RA.png
https://www.sebokwiki.org/wiki/Systems_Thinking#/media/File:Fig2_Systems_Thinking_and_Systems_Science_RA.png
https://www.sebokwiki.org/wiki/Systems_Thinking#/media/File:Fig2_Systems_Thinking_and_Systems_Science_RA.png
https://www.sebokwiki.org/wiki/Systems_Thinking#/media/File:Fig2_Systems_Thinking_and_Systems_Science_RA.png
https://www.sebokwiki.org/wiki/Concepts_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Concepts_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Concepts_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Concepts_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Concepts_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Principles_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Principles_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Principles_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Principles_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Principles_of_Systems_Thinking

What is Systems Engineering?

Systems Engineering is a transdisciplinary approach and means, based on systems
principles and concepts, to enable the successful realization, use and retiral of
engineered systems.
It focuses on
• establishing stakeholders’ purpose and success criteria, and defining actual or

anticipated customer needs and required functionality early in the development cycle,
• establishing an appropriate lifecycle model and process approach considering the

levels of complexity, uncertainty and change

• documenting and modelling requirements and solution architecture for each phase of
the endeavour

• proceeding with design synthesis and system validation
• while considering the complete problem and all necessary enabling systems and

services.
Systems Engineering provides facilitation, guidance and leadership to integrate all the disciplines and specialty groups into a team effort forming an appropriately structured development process that proceeds from concept to production to operation, evolution and
eventual disposal.

Systems Engineering considers both the business and the technical needs of all customers with the goal of providing a quality solution that meets the needs of users and other stakeholders and is fit for the intended purpose in real-world operation, and avoids or
minimizes adverse unintended consequences.

A fresh look at Systems Engineering – what is it, how should it work?
28th Annual INCOSE International Symposium - 201810

•The practice of systems engineering is concerned with
both a systemic approach to understanding the
problem, devising a solution, and understanding the
interdependencies in the work to develop, deliver and
evolve the solution;
•and a systematic approach to establishing objectives

and success criteria, analyzing and documenting the
solution, predicting its effectiveness, and establishing
and implementing an effective and efficient process for
development, delivery and subsequent evolution.

The practice of Systems Engineering

11
Envisioning Systems Engineering as a Transdisciplinary Venture

28th Annual INCOSE International Symposium - 2018

Engineered System x System Engineering

An engineered system is an system made of technical or

sociotechnical elements that exhibits emergent properties not exhibited
by its individual elements. It is created by and for people; has a purpose,
with multiple views; satisfies key stakeholders’ value propositions; has a
life cycle and evolution dynamics; has a boundary and an external
environment; and is part of a system-of-interest hierarchy.

Systems engineering is “an transdisciplinary approach and

means to enable the realization of successful (engineered) systems”. It
focuses on holistically and concurrently understanding stakeholder needs;
exploring opportunities; documenting requirements; and synthesizing,
verifying, validating, and evolving solutions while considering the
complete problem, from system concept exploration through system
disposal.

http://sebokwiki.org/wiki/Use_Case_0:_Systems_Engineering_Novices12

Four aspects of Systems Engineering
• 1. some very basic and widely applicable

SE tenets (principles and beliefs);

• 2. a general SE approach to complex and
complicated problems;

• 3. the “SE process”, which we see
evolving from the current SE process
described in the INCOSE SE Handbook
into a family of SE process models,
targeted towards different system types;
and

• 4. an SE toolbox of techniques and
methods that are widely applicable
across the spectrum.

13
Envisioning Systems Engineering as a Transdisciplinary Venture

28th Annual INCOSE International Symposium - 2018

Tenants

• Systems Engineers often talk about using a “systems
approach” to work their way into a problem that seems wider
or fuzzier than “normal engineering” (whatever that is).

• Such a “systems approach” uses selected systems principles
or beliefs that are of proven value in an engineering context
and are also useful elsewhere.

• We will use the term “systems engineering tenets” to refer to
a key set of principles and beliefs drawn from various branches
of systems thinking and the systems sciences, that seem to
underpin most or all of what we currently recognize as systems
engineering.

14
Envisioning Systems Engineering as a Transdisciplinary Venture

28th Annual INCOSE International Symposium - 2018

12 Systems Engineering Tenets

1. Understand what success means

2. Consider the whole problem, the whole solution and the full lifecycle

3. Understand and manage interdependencies

4. Adapt the parts to serve the purpose of the whole

5. Recognize that Systems Engineering occurs at multiple levels

6. Base decisions on evidence and reasoned judgement

7. Recognize uncertainty while managing change, risk opportunities and expectations

8. Handle structure and behavior as two complementary aspects of any system

9. Understand and use appropriate feedback (loop)

10. Understand and manage value

11. Be both systemic and systematic

12. Respect the people
Envisioning Systems Engineering as a Transdisciplinary Venture

28th Annual INCOSE International Symposium - 201815

Envisioning Systems
Engineering as a

Transdisciplinary Venture
(researchgate.net)

https://www.researchgate.net/publication/327073164_Envisioning_Systems_Engineering_as_a_Transdisciplinary_Venture
https://www.researchgate.net/publication/327073164_Envisioning_Systems_Engineering_as_a_Transdisciplinary_Venture
https://www.researchgate.net/publication/327073164_Envisioning_Systems_Engineering_as_a_Transdisciplinary_Venture
https://www.researchgate.net/publication/327073164_Envisioning_Systems_Engineering_as_a_Transdisciplinary_Venture

As the entities of a system
are brought together, their

interaction will cause
function, behavior,

performance, and other
intrinsic properties to

emerge.

Principle of Emergence:

This Photo by Unknown Author is licensed under CC BY-SA

http://n9neo.wordpress.com/2013/09/05/sep-5th-13-line-app-new-paid-stickers/mickey-mouse-wizard
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

• Emergence is the power and the magic of systems. Emergence refers to
what appears, materializes, or surfaces when a system operates.
Obtaining the desired emergence is why we build systems. Understanding
emergence is the goal—and the art—of system thinking.

• What emerges when a system comes together? Most obviously and
crucially, function emerges. Function is what a system does: its actions,
outcomes, or outputs. In a designed system, we design so that the
anticipated desirable primary function emerges (cars transport people).

Stakeholders

• A stakeholder is any individual, group or organization that can affect, be
affected by a project.

ST
A

KE
H

O
LD

ER
 D

EF
IN

IT
IO

N

19

Stakeholders

ST
A

KE
H

O
LD

ER
 D

EF
IN

IT
IO

N

20

Life cycle

21

Life cycle

“Life cycle is the series of phases through which something passes.”

22

Life cycle

• Engineered Systems have a life cycle.

• Life cycle is a series of stages through which a system passes during its lifetime

• Life cycle considers the evolution of a system from conception through retirement

23

(Classical) VEE Model

24

Life cycle concepts

• The life cycle concept is a description of the expected system life cycle.

• Life cycle concepts focus on defining solutions for the system life cycle.

25

Life cycle requirements

• Life cycle requirements promote the anticipated understanding about
future system attributes

26

CONOPs

28

Concept definition phase

• The conceptual design provides a description of the proposed system that
fulfills the stakeholders needs.

29

Concept of Operations

• Describes the characteristics of a proposed system from the viewpoint its
operators

30

What is a CONOPS?

• Description of how the System will be operated to meet stakeholder
expectations

• Explains your system’s characteristics from an operational perspective and

helps facilitate an understanding of the system’s purpose

• Illustrates a day in the life of your system’s intended use

31

Why is a CONOPS important?

• Drives development of requirements
• Maintains the context of a requirement in everyday, informal language

• Thinking through the ConOps and use cases reveal requirements and design
functions that might otherwise be overlooked

• Gets everyone on the same page about what the project is and what it
will do

• Identifies user interface issues early

• Identifies key stakeholder needs for defining, designing, and
implementing the end product

• Provides guidance for the development of system definition
documentation

32

The CONOPS contains, as a minimum, the
following:
• Operational goals from the viewpoint of all stakeholders.

• Overview of the System of interest, including supporting systems.

• Intended use of the system during all life-cycle phases of the program/project,
including but not limited to:
• 1. Manufacturing and assembly / 2. Integration and test. / 3. Transportation and storage. /

4. Ground operations/launch integration. / 5. Launch Operations - launch, deployment, on-
orbit checkout. / 6. Maintenance and disposal.

• Operational timelines.

• Command and data architecture.

• End-to-end communication strategy.

• Integrated logistic support (resupply, maintenance, assembly).

• Operational facilities.

• Contingency and off-nominal operations.

A ConOps does NOT
include design

solutions.33

CONOPS Example: SPORT

Disposal
300 km
alt

On-orbit Operations
(> 12 months)

SPORT Checkout

Deploy from
NANORACKS
400 km altInstallation

Launch

SPORT Operations

Images: Charlie Gray

Soft
Package

NASA

INPE/ITA

34

35

Functions

• A function is an action, an operation or a service, performed by the
system or one of its components, or also by an actor interacting with the
system.

• Performing a function generally produces exchange items expected by
other functions, and to do this, it requires other items provided by other
functions.

• Several functions can be grouped into a mother function (they are then
called subfunctions, or daughter functions, of this function).
Symmetrically, a function can be refined into several functions.

• By convention, a function is named with a verb.

Function (action/activity)

Boundaries

• Boundary is understood to be a
more or less arbitrary border
between the system and its
surroundings or the environment
in which it is embedded.

39

Enhanced
Function
Flow Block
Diagram
(EFFBD)
(vitechcorp
.com)

https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm

Requirements

42

D
EF

IN
IT

IO
N

S

• Functional Requirements describe what the system should do and Non-
functional Requirements place constraints on how these functional
requirements are implemented.

D
EF

IN
IT

IO
N

S

43

TO DO OR NOT TO DO

IMPORTANCE OF HAVING GOOD REQUIREMENTS

• Requirements tell you what the system needs to do
(functional requirements).

• How well the system needs to do it (performance
requirements)

• What environment the system has to work in
(environmental requirements).

• What the system must do to fit into the bigger system
(interface requirements).

• What lower level subsystems/assemblies/components
must do to fit into the system and make it all work
(allocation of requirements/resources).

• What you need to do before you fly (verification activities).

• And basically, when you are done (requirements are met).

44

CLASS EXAMPLE: FUNCTIONS TO REQUIREMENTS
• NEED STATEMENT: PORTABLE AUTOMOTIVE VEHICLE FOR OFF-ROAD

• Use Case: Camping Trip
• Ops: Load Camping Gear On To Vehicle

• Function: Provide Space To Store Camping Gear
• Requirement: The vehicle shall be designed with a minimum cargo storage area of 11 cubic feet.
• Rationale: Estimated calculation of space needed to accommodate customer’s camping equipment

• Ops: Load Personnel On To Vehicle
• Function: Provide Capability To Carry Up To 4 People

• Ops: Drive To Camp Site
• Function: Provide Capability To Drive 20 Miles Roundtrip

• Requirement: The vehicle driving range shall be a minimum of 40 miles.
• Rationale: Customer stated the maximum range (out and back) of use as being 20 miles after getting the

vehicle to where it would be used.
• Function: Provide Capability To Utilize GPS

• Ops: Get Stuck
• Function: Provide Vehicle Capability To Get Un-Stuck

• Ops: Unload Camping Gear/Camp
• Function: Provide Electrical Interface For DC Powered Camp Eq.

• Requirement: The vehicle shall provide, 12 VDC +/- 1.5 VDC, 12 Amps maximum, auxiliary utility ports.
• Rationale: Based on power draw assessment of the connecting equipment
• Requirement: The vehicle shall provide two utility ports for connecting DC powered camping equipment.
• Rationale: Customer desired two specific ports to connect equipment simultaneously

45

Verification

• The verification of a product shows proof of compliance with
requirements – the product can meet each "must" claim as proven
through the performance of a test, analysis, inspection or demonstration
(or combination of these).

• Verification is a process of confirming that a requirement or system is
compliant.
• In other words, the system checker asks the question: Does the system meet your

requirements?

• The requirements checker asks the question: Does the system really meet this
specific requirement?

Validation

• VALIDATION of a product shows that the product fulfills its intended
purpose in the intended environment – that it meets the expectations of
the customer and other stakeholders, as demonstrated by the
performance of a test, analysis, inspection, or demonstration.

• Validation is a process of confirming that a set of requirements, design, or
system meets the intent of the developer or customer.

50

MoCs
Means of Compliance

Architecture

•System architecture is the embodiment of
concept, the allocation of
physical/informational function to the
elements of form, and the definition of
relationships among the elements and
with the surrounding context.

53

System Hierarchy

• System and system element relationship

54

The system is decomposed into a hierarchy of smaller and
smaller elements.

55

One of the most important criteria for judging the
goodness of a design:

coupling and cohesion

together, these two concepts form the central theory
of design.

Laplante, P. A. and Ovaska, S. J. Real-Time Systems Design and Analysis. 4th Ed. 2012.

56

Cohesion is about how well elements within a module belong
together and serve a common purpose.

Coupling is about how much one module depends or interacts
with other modules.

57

•When a large system is decomposed into smaller
entities, it's inevitable that these entities will interact
with one another.

• If the boundaries of these entities have been poorly
identified, then the entities will heavily depend and
frequently interact with one another.

• In a poor design, it might also happen that properties
and functions within an entity perform diverse tasks
and therefore don't seem to belong together.

Examples

SY
ST

EM
 F

O
R

M

59

EXAMPLE OF FORM: centrifugal pump

SY
ST

EM
 F

O
R

M

60

Example of form: circuit components

SY
ST

EM
 F

O
R

M

61

Example of form: software code

Final Considerations

 X

Viability
Studies

Assembly
Integration

Tests

Operation

Pre-A A B DC E F

CONOPs

Requirements

Decompose

Evaluate the organizations

Subsystem Design

Component Design

System Design

We know the basic SE Framework

Lifecycle

Scenarios

Functions Elements

Stakeholders

(MoEs)

Requirements Synthesis

CONOPs

Validate

Verify

	Default Section
	Slide 1: SYSTEMS eNGINEERING (super short) rEVIEW

	start
	Slide 2: Context
	Slide 3: At the beginning there was only chaos
	Slide 4: We started to understand the chaos
	Slide 5: Complex systems
	Slide 6: The growth of complexity in systems
	Slide 7

	Basic Definitions
	Slide 8: Some definitions
	Slide 9: Systems thinking
	Slide 10: What is Systems Engineering?
	Slide 11: The practice of Systems Engineering
	Slide 12: Engineered System x System Engineering
	Slide 13: Four aspects of Systems Engineering
	Slide 14: Tenants
	Slide 15: 12 Systems Engineering Tenets
	Slide 16: Principle of Emergence:
	Slide 17

	Stakeholders
	Slide 18: Stakeholders
	Slide 19: Stakeholders
	Slide 20

	Lifecycle
	Slide 21: Life cycle
	Slide 22: Life cycle
	Slide 23: Life cycle
	Slide 24: (Classical) VEE Model
	Slide 25: Life cycle concepts
	Slide 26: Life cycle requirements
	Slide 27

	CONOPS
	Slide 28: CONOPs
	Slide 29: Concept definition phase
	Slide 30: Concept of Operations
	Slide 31: What is a CONOPS?
	Slide 32: Why is a CONOPS important?
	Slide 33: The CONOPS contains, as a minimum, the following:
	Slide 34: CONOPS Example: SPORT
	Slide 35

	Function
	Slide 36: Functions
	Slide 37: Function (action/activity)
	Slide 38: Boundaries
	Slide 39
	Slide 40

	Requirements
	Slide 41: Requirements
	Slide 42
	Slide 43: TO DO OR NOT TO DO
	Slide 44: IMPORTANCE OF HAVING GOOD REQUIREMENTS
	Slide 45: CLASS EXAMPLE: FUNCTIONS TO REQUIREMENTS
	Slide 46: Verification
	Slide 47
	Slide 48: Validation
	Slide 49
	Slide 50
	Slide 51

	Architecture
	Slide 52: Architecture
	Slide 53
	Slide 54: System Hierarchy
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Examples
	Slide 59: EXAMPLE OF FORM: centrifugal pump
	Slide 60: Example of form: circuit components
	Slide 61: Example of form: software code

	Final Consideration
	Slide 62: Final Considerations
	Slide 63
	Slide 64: We know the basic SE Framework

