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Context
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At the beginning there was only chaos

• At the beginning there was only Chaos, 
Night, dark Erebus, and deep Tartarus. 
Earth, the air and heaven had no existence. 
[695] Firstly, blackwinged Night laid a germless egg in the 
bosom of the infinite deeps of Erebus, and from this, after 
the revolution of long ages, sprang the graceful Eros with 
his glittering golden wings, swift as the whirlwinds of the 
tempest. He mated in deep Tartarus with dark Chaos, 
winged like himself, and thus hatched forth our race, 
which was the first to see the light. [700] That of the 
Immortals did not exist until Eros had brought together all 
the ingredients of the world, and from their marriage 
Heaven, Ocean, Earth and the imperishable race of 
blessed gods sprang into being. Thus our origin is very 
much older than that of the dwellers in Olympus. We are 
the offspring of Eros; there are a thousand proofs to show 
it. We have wings and we lend assistance to lovers. [705] 
How many handsome youths, who had sworn to remain 
insensible, have opened their thighs because of our power 
and have yielded themselves to their lovers when almost 
at the end of their youth, being led away by the gift of a 
quail, a waterfowl, a goose, or a cock.

3 Chaos (cosmogony) - Wikipedia Aristophanes, Birds, line 685 (tufts.edu)

https://en.wikipedia.org/wiki/Chaos_(cosmogony)
https://en.wikipedia.org/wiki/Chaos_(cosmogony)
https://en.wikipedia.org/wiki/Chaos_(cosmogony)
http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.01.0026%3Acard%3D685


We started to understand the chaos

4 https://doi.org/10.1590/S0103-40142006000300022 

https://doi.org/10.1590/S0103-40142006000300022
https://doi.org/10.1590/S0103-40142006000300022
https://doi.org/10.1590/S0103-40142006000300022


• Complex systems are networks made of a number of components that 
interact with each other, typically in a nonlinear fashion. Complex 
systems may arise and evolve through self-organization, such that they 
are neither completely regular nor completely random, permitting the 
development of emergent behavior at macroscopic scales.

5

Complex systems
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The growth of complexity in systems

https://doi.org/10.4271/12-03-02-0011

https://doi.org/10.4271/12-03-02-0011
https://doi.org/10.4271/12-03-02-0011
https://doi.org/10.4271/12-03-02-0011
https://doi.org/10.4271/12-03-02-0011
https://doi.org/10.4271/12-03-02-0011
https://doi.org/10.4271/12-03-02-0011
https://doi.org/10.4271/12-03-02-0011
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https://ioannouolga.blog/2017/09/14/complexity-theory-ii-m-woermann/

https://www.youtube.com/watch?v=atMdf0rhbpI

Ending scene from 1971 movie THX 1138



Some definitions



Systems thinking

Systems Thinking and Systems Science RA - Systems Thinking - SEBoK (sebokwiki.org)

Concepts of Systems 
Thinking - SEBoK 
(sebokwiki.org)

Principles of Systems 
Thinking - SEBoK 
(sebokwiki.org)
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https://www.sebokwiki.org/wiki/Systems_Thinking#/media/File:Fig2_Systems_Thinking_and_Systems_Science_RA.png
https://www.sebokwiki.org/wiki/Systems_Thinking#/media/File:Fig2_Systems_Thinking_and_Systems_Science_RA.png
https://www.sebokwiki.org/wiki/Systems_Thinking#/media/File:Fig2_Systems_Thinking_and_Systems_Science_RA.png
https://www.sebokwiki.org/wiki/Systems_Thinking#/media/File:Fig2_Systems_Thinking_and_Systems_Science_RA.png
https://www.sebokwiki.org/wiki/Systems_Thinking#/media/File:Fig2_Systems_Thinking_and_Systems_Science_RA.png
https://www.sebokwiki.org/wiki/Systems_Thinking#/media/File:Fig2_Systems_Thinking_and_Systems_Science_RA.png
https://www.sebokwiki.org/wiki/Concepts_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Concepts_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Concepts_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Concepts_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Concepts_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Principles_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Principles_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Principles_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Principles_of_Systems_Thinking
https://www.sebokwiki.org/wiki/Principles_of_Systems_Thinking


What is Systems Engineering?

Systems Engineering is a transdisciplinary approach and means, based on systems 
principles and concepts, to enable the successful realization, use and retiral of 
engineered systems.
It focuses on
• establishing stakeholders’ purpose and success criteria, and defining actual or 

anticipated customer needs and required functionality early in the development cycle,
• establishing an appropriate lifecycle model and process approach considering the 

levels of complexity, uncertainty and change

• documenting and modelling requirements and solution architecture for each phase of 
the endeavour

• proceeding with design synthesis and system validation
• while considering the complete problem and all necessary enabling systems and 

services.
Systems Engineering provides facilitation, guidance and leadership to integrate all the disciplines and specialty groups into a team effort forming an appropriately structured development process that proceeds from concept to production to operation, evolution and 
eventual disposal.

Systems Engineering considers both the business and the technical needs of all customers with the goal of providing a quality solution that meets the needs of users and other stakeholders and is fit for the intended purpose in real-world operation, and avoids or 
minimizes adverse unintended consequences.

A fresh look at Systems Engineering – what is it, how should it work? 
28th Annual INCOSE International Symposium - 201810



•The practice of systems engineering is concerned with 
both a systemic approach to understanding the 
problem, devising a solution, and understanding the  
interdependencies in the work to develop, deliver and 
evolve the solution; 
•and a systematic approach to establishing objectives 

and success criteria, analyzing and documenting the 
solution, predicting its effectiveness, and establishing 
and implementing an effective and efficient process for 
development, delivery and subsequent evolution.

The practice of Systems Engineering

11
Envisioning Systems Engineering as a Transdisciplinary Venture 

28th Annual INCOSE International Symposium - 2018



Engineered System x System Engineering

An engineered system is an system made of technical or 

sociotechnical elements that exhibits emergent properties not exhibited 
by its individual elements. It is created by and for people; has a purpose, 
with multiple views; satisfies key stakeholders’ value propositions; has a 
life cycle and evolution dynamics; has a boundary and an external 
environment; and is part of a system-of-interest hierarchy.

Systems engineering is “an transdisciplinary approach and 

means to enable the realization of successful (engineered) systems”. It 
focuses on holistically and concurrently understanding stakeholder needs; 
exploring opportunities; documenting requirements; and synthesizing, 
verifying, validating, and evolving solutions while considering the 
complete problem, from system concept exploration through system 
disposal.

http://sebokwiki.org/wiki/Use_Case_0:_Systems_Engineering_Novices12



Four aspects of Systems Engineering
• 1. some very basic and widely applicable 

SE tenets (principles and beliefs);

• 2. a general SE approach to complex and 
complicated problems;

• 3. the “SE process”, which we see 
evolving from the current SE process 
described in the INCOSE SE Handbook 
into a family of SE process models, 
targeted towards different system types; 
and

• 4. an SE toolbox of techniques and 
methods that are widely applicable 
across the spectrum.

13
Envisioning Systems Engineering as a Transdisciplinary Venture 

28th Annual INCOSE International Symposium - 2018



Tenants

• Systems Engineers often talk about using a “systems 
approach” to work their way into a problem that seems wider 
or fuzzier than “normal engineering” (whatever that is ). 

• Such a “systems approach” uses selected systems principles 
or beliefs that are of proven value in an engineering context 
and are also useful elsewhere. 

• We will use the term “systems engineering tenets” to refer to 
a key set of principles and beliefs drawn from various branches 
of systems thinking and the systems sciences, that seem to 
underpin most or all of what we currently recognize as systems 
engineering.

14
Envisioning Systems Engineering as a Transdisciplinary Venture 

28th Annual INCOSE International Symposium - 2018



12 Systems Engineering Tenets

1. Understand what success means

2. Consider the whole problem, the whole solution and the full lifecycle

3. Understand and manage interdependencies

4. Adapt the parts to serve the purpose of the whole

5. Recognize that Systems Engineering occurs at multiple levels

6. Base decisions on evidence and reasoned judgement

7. Recognize uncertainty while managing change, risk opportunities and expectations

8. Handle structure and behavior as two complementary aspects of any system

9. Understand and use appropriate feedback (loop)

10. Understand and manage value

11. Be both systemic and systematic

12. Respect the people
Envisioning Systems Engineering as a Transdisciplinary Venture 

28th Annual INCOSE International Symposium - 201815

Envisioning Systems 
Engineering as a 

Transdisciplinary Venture 
(researchgate.net)

https://www.researchgate.net/publication/327073164_Envisioning_Systems_Engineering_as_a_Transdisciplinary_Venture
https://www.researchgate.net/publication/327073164_Envisioning_Systems_Engineering_as_a_Transdisciplinary_Venture
https://www.researchgate.net/publication/327073164_Envisioning_Systems_Engineering_as_a_Transdisciplinary_Venture
https://www.researchgate.net/publication/327073164_Envisioning_Systems_Engineering_as_a_Transdisciplinary_Venture


As the entities of a system 
are brought together, their 

interaction will cause 
function, behavior, 

performance, and other 
intrinsic properties to 

emerge.

Principle of Emergence:  

This Photo by Unknown Author is licensed under CC BY-SA

http://n9neo.wordpress.com/2013/09/05/sep-5th-13-line-app-new-paid-stickers/mickey-mouse-wizard
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/


• Emergence is the power and the magic of systems. Emergence refers to 
what appears, materializes, or surfaces when a system operates. 
Obtaining the desired emergence is why we build systems. Understanding 
emergence is the goal—and the art—of system thinking.

• What emerges when a system comes together? Most obviously and 
crucially, function emerges. Function is what a system does: its actions, 
outcomes, or outputs. In a designed system, we design so that the 
anticipated desirable primary function emerges (cars transport people).



Stakeholders



• A stakeholder is any individual, group or organization that can affect, be 
affected by a project.
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Stakeholders
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Life cycle
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Life cycle

“Life cycle is the series of phases through which something passes.”

22



Life cycle

• Engineered Systems have a life cycle.

• Life cycle is a series of stages through which a system passes during its lifetime

• Life cycle considers the evolution of a system from conception through retirement

23



(Classical) VEE Model
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Life cycle concepts

• The life cycle concept is a description of the expected system life cycle. 

• Life cycle concepts focus on defining solutions for the system life cycle.

25



Life cycle requirements

• Life cycle requirements promote the anticipated understanding about 
future system attributes

26





CONOPs
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Concept definition phase

• The conceptual design provides a description of the proposed system that 
fulfills the stakeholders needs.

29



Concept of Operations

• Describes the characteristics of a proposed system from the viewpoint its 
operators

30



What is a CONOPS?

• Description of how the System will be operated to meet stakeholder 
expectations

• Explains your system’s characteristics from an operational perspective and 

helps facilitate an understanding of the system’s purpose  

• Illustrates a day in the life of your system’s intended use

31



Why is a CONOPS important?

• Drives development of requirements
• Maintains the context of a requirement in everyday, informal language

• Thinking through the ConOps and use cases reveal requirements and design 
functions that might otherwise be overlooked

• Gets everyone on the same page about what the project is and what it 
will do

• Identifies user interface issues early

• Identifies key stakeholder needs for defining, designing, and 
implementing the end product

• Provides guidance for the development of system definition 
documentation

32



The CONOPS contains, as a minimum, the 
following: 
• Operational goals from the viewpoint of all stakeholders. 

• Overview of the System of interest, including supporting systems. 

• Intended use of the system during all life-cycle phases of the program/project, 
including but not limited to: 
• 1. Manufacturing and assembly / 2. Integration and test. / 3. Transportation and storage. / 

4. Ground operations/launch integration. / 5. Launch Operations - launch, deployment, on-
orbit checkout. / 6. Maintenance and disposal. 

• Operational timelines. 

• Command and data architecture. 

• End-to-end communication strategy. 

• Integrated logistic support (resupply, maintenance, assembly). 

• Operational facilities. 

• Contingency and off-nominal operations. 

A ConOps does NOT 
include design 

solutions.33



CONOPS Example:  SPORT

Disposal 
300 km 
alt

On-orbit Operations 
(> 12 months)

SPORT Checkout

Deploy from 
NANORACKS
400 km altInstallation

Launch

SPORT Operations

Images: Charlie Gray

Soft 
Package

NASA

INPE/ITA
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Functions



• A function is an action, an operation or a service, performed by the 
system or one of its components, or also by an actor interacting with the 
system.

• Performing a function generally produces exchange items expected by 
other functions, and to do this, it requires other items provided by other 
functions.

• Several functions can be grouped into a mother function (they are then 
called subfunctions, or daughter functions, of this function). 
Symmetrically, a function can be refined into several functions.

• By convention, a function is named with a verb.

 

Function (action/activity)



Boundaries

• Boundary is understood to be a 
more or less arbitrary border 
between the system and its 
surroundings or the environment 
in which it is embedded.
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Enhanced 
Function 
Flow Block 
Diagram 
(EFFBD) 
(vitechcorp
.com)

https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm
https://www.vitechcorp.com/resources/core/onlinehelp/desktop/Views/Enhanced_Function_Flow_Block_Diagram_(EFBD).htm


Requirements
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• Functional Requirements describe what the system should do and Non-
functional Requirements place constraints on how these functional 
requirements are implemented.
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TO DO OR NOT TO DO



IMPORTANCE OF HAVING GOOD REQUIREMENTS

• Requirements tell you what the system needs to do 
(functional requirements).

• How well the system needs to do it (performance 
requirements)

• What environment the system has to work in 
(environmental requirements).

• What the system must do to fit into the bigger system 
(interface requirements).

• What lower level subsystems/assemblies/components 
must do to fit into the system and make it all work 
(allocation of requirements/resources).

• What you need to do before you fly (verification activities).

• And basically, when you are done   (requirements are met).

44



CLASS EXAMPLE: FUNCTIONS TO REQUIREMENTS
• NEED STATEMENT: PORTABLE AUTOMOTIVE VEHICLE FOR OFF-ROAD

• Use Case: Camping Trip
• Ops: Load Camping Gear On To Vehicle

• Function: Provide Space To Store Camping Gear
• Requirement: The vehicle shall be designed with a minimum cargo storage area of 11 cubic feet.
• Rationale: Estimated calculation of space needed to accommodate customer’s camping equipment

• Ops: Load Personnel On To Vehicle
• Function: Provide Capability To Carry Up To 4 People

• Ops: Drive To Camp Site
• Function: Provide Capability To Drive 20 Miles Roundtrip

• Requirement: The vehicle driving range shall be a minimum of 40 miles.
• Rationale: Customer stated the maximum range (out and back) of use as being 20 miles after getting the 

vehicle to where it would be used.
• Function: Provide Capability To Utilize GPS

• Ops: Get Stuck
• Function: Provide Vehicle Capability To Get Un-Stuck

• Ops: Unload Camping Gear/Camp
• Function: Provide Electrical Interface For DC Powered Camp Eq.

• Requirement: The vehicle shall provide, 12 VDC +/- 1.5 VDC, 12 Amps maximum, auxiliary utility ports.
• Rationale: Based on power draw assessment of the connecting equipment
• Requirement: The vehicle shall provide two utility ports for connecting DC powered camping equipment.
• Rationale: Customer desired two specific ports to connect equipment simultaneously

45



Verification

• The verification of a product shows proof of compliance with 
requirements – the product can meet each "must" claim as proven 
through the performance of a test, analysis, inspection or demonstration 
(or combination of these). 

• Verification is a process of confirming that a requirement or system is 
compliant. 
• In other words, the system checker asks the question: Does the system meet your 

requirements? 

•  The requirements checker asks the question: Does the system really meet this 
specific requirement?





Validation

• VALIDATION of a product shows that the product fulfills its intended 
purpose in the intended environment – that it meets the expectations of 
the customer and other stakeholders, as demonstrated by the 
performance of a test, analysis, inspection, or demonstration. 

• Validation is a process of confirming that a set of requirements, design, or 
system meets the intent of the developer or customer.
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MoCs
Means of Compliance



Architecture



•System architecture is the embodiment of 
concept, the allocation of 
physical/informational function to the 
elements of form, and the definition of 
relationships among the elements and 
with the surrounding context.

53



System Hierarchy

• System and system element relationship

54

The system is decomposed into a hierarchy of smaller and 
smaller elements. 
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One of the most important criteria for judging the 
goodness of a design: 

coupling and cohesion

together, these two concepts form the central theory 
of design.

Laplante, P. A. and Ovaska, S. J. Real-Time Systems Design and Analysis. 4th Ed. 2012.
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Cohesion is about how well elements within a module belong 
together and serve a common purpose.

Coupling is about how much one module depends or interacts 
with other modules.
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•When a large system is decomposed into smaller 
entities, it's inevitable that these entities will interact 
with one another.

• If the boundaries of these entities have been poorly 
identified, then the entities will heavily depend and 
frequently interact with one another.

• In a poor design, it might also happen that properties 
and functions within an entity perform diverse tasks 
and therefore don't seem to belong together.
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EXAMPLE OF FORM: centrifugal pump
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Example of form: circuit components
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Example of form: software code



Final Considerations
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We know the basic SE Framework
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