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this final paper and to only loan or to sell copies for academic and scientific purposes.
The author reserves other publication rights and no part of this final paper can be
reproduced without the authorization of the author.

Marcus Gabriel de Almeida Nunes
Rua H8B, Ap. 209
12228-461 – São José dos Campos–SP
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Abstract

This work aims to develop a plugin for the Arena Concept.IO simulation platform, de-

signed to integrate monitoring, metrics analysis, and machine learning within a Systems

Engineering environment. The system was developed to collect and process data trans-

mitted during simulations, recording them in structured files through a logging module,

which allows for the assessment of mission performance and the identification of oper-

ational patterns based on predefined metrics. The collected information served as the

basis for training a supervised model using the k-Nearest Neighbors algorithm, capable

of classifying missions into success, partial failure or total failure categories. The results

indicate that the model can recognize recurring behaviors and infer mission effectiveness,

validating the use of machine learning as a support tool for the automated analysis of

simulations. The plugin also incorporates an interactive dashboard that enables the visu-

alization of simulated entities and their evolution over time. In light of these findings, the

feasibility of integrating simulation and machine learning is confirmed, highlighting the

potential of the proposed approach to support requirements verification and validation as

well as the performance analysis of complex systems. The plugin can also be employed

for failure studies and the optimization of operational strategies, serving as a foundation

for future expansions in more complex and multidomain scenarios.



Resumo

Este trabalho tem como objetivo desenvolver um plugin para a plataforma de simulação

Arena Concept.IO, voltado à integração de monitoramento, análise de métricas e apren-

dizado de máquina em um ambiente de Engenharia de Sistemas. O sistema foi projetado

para coletar e processar dados transmitidos durante as simulações, registrando-os em

arquivos estruturados por meio de um módulo de registrador, o que permite avaliar o

desempenho das missões e identificar padrões operacionais com base em métricas pre-

viamente definidas. As informações coletadas serviram de base para o treinamento de

um modelo supervisionado baseado no algoritmo dos k-vizinhos mais próximos, capaz de

classificar as missões em categorias de sucesso, falha parcial ou falha total. Os resultados

indicam que o modelo consegue reconhecer comportamentos recorrentes e inferir a eficá-

cia das missões, validando o uso de aprendizado de máquina como ferramenta de apoio

à análise automatizada de simulações. O plugin também incorpora um dashboard que

possibilita a visualização do comportamento das entidades simuladas e de sua evolução ao

longo do tempo. Diante disso, confirma-se a viabilidade da integração entre simulação e

aprendizado de máquina, destacando o potencial da abordagem para apoiar a verificação

e validação de requisitos e a análise de desempenho de sistemas complexos. O plugin pode

ser empregado também para o estudo de falhas e otimização de estratégias operacionais,

servindo como base para futuras expansões em cenários mais complexos e multidomı́nio.
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1 Introduction

1.1 Motivation

The increasing complexity in engineering systems, due to growing demands for perfor-

mance, safety, and integration across different areas, makes it increasingly important to

have tools that help understand how these systems function as a whole, including their op-

erations and naturally emerging behaviors. Systems Engineering, according to (INCOSE,

2015), is an interdisciplinary approach that integrates various disciplines to ensure that

systems are successful, meet their objectives, are resilient, and have minimized risks.

In this context, computational simulation is a highly useful tool for testing ideas,

predicting how a system might behave in different situations, and verifying whether re-

quirements are being met throughout the entire project lifecycle. However, as per (Madni;

Sievers, 2017), the true value of a simulation lies in the use of metrics of effectiveness,

which help measure its accuracy, its ability to predict results, and its utility in decision-

making. Having these well-defined metrics is essential for evaluating system performance,

identifying possible risks, and making design improvements, as pointed out by (Henzinger,

2013) and (Componation; Dorneich; Hansen, 2015).

How can a plugin assist stakeholders in metric analysis, requirements evaluation, and

decision support in simulations? Arena Concept.IO offers an advanced simulation environ-

ment, with an event-driven architecture and MQTT bus-based communication. However,

it still lacks a specific tool for extracting, analyzing, and visualizing metrics, which lim-

its the ability of engineers and stakeholders to monitor mission progress and validate

emergent properties of the simulated systems.

In this scenario, the development of a plugin that integrates data analysis, visualiza-

tion, and automatic system requirements evaluation emerges as a strategic opportunity to

support decisions grounded in Systems Engineering principles. The inclusion of a machine

learning model to classify simulations based on extracted metrics represents an additional

resource for verifying the fulfillment of defined operational objectives and identifying de-

viations from expected requirements in complex simulated environments.
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1.2 Objectives

The objective of this work is to develop a plugin for the Arena Concept.IO platform

that offers stakeholders integrated resources for the real-time monitoring of data trans-

mitted via the MQTT bus, the extraction and logging of the position and behavior of

simulated entities over time, the automatic evaluation of pre-defined emergent properties,

and the presentation of performance metrics extracted throughout the simulation via a

dashboard. The metrics developed from this data will be used to build a machine learning

model aimed at predicting the success of the simulations, capable of classifying them as

successful, partially failed, or failed. This aims to provide objective evidence to support

decision-making during the design or analysis process.

1.3 Expected Benefits

The implementation of the proposed plugin yields a series of benefits that encompass

technical, operational, and strategic aspects, thus promoting an integrated approach to

supporting complex systems. Firstly, the structured extraction of metrics from simula-

tions allows for more informed decisions, based on concrete data, which facilitates both

requirements validation and monitoring of systemic goal achievement (Madni; Sievers,

2018). Furthermore, the ability to monitor critical variables from the logged data sig-

nificantly contributes to the identification of failures and anomalous behaviors, favoring

the mitigation of operational and design risks (Brown; Conrad; Beyeler; Glass, 2013;

INCOSE, 2015).

Regarding efficiency, the plugin makes it possible to identify bottlenecks and ineffi-

ciency points, allowing for adjustments in parameters and strategies that result in per-

formance improvements (Cho; Hurley; Xu, 2016). The automation of emergent property

verification, through defined metrics and machine learning models, also represents a rel-

evant advancement by reducing the effort required for manual evaluation in the analysis

of requirements compliance.

The consolidation of data into interactive dashboards and reports represents another

important benefit, as it strengthens confidence in the decisions made and facilitates the

understanding of occurrences during the simulation. The accessibility of information,

in turn, favors collaboration among the various stakeholder profiles involved, such as

engineers, analysts, and managers, promoting more effective communication.

Finally, the use of metrics in different phases of the system lifecycle, such as validation,

operation, and support, reinforces the fundamental principles of Systems Engineering.

This data reuse not only adds value to post-simulation analysis but also contributes to
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the continuity and consistency of systemic development throughout the entire process (Fet;

Haskins, 2023).

1.4 Challenges

The development of this work involves a series of technical and conceptual challenges.

Integration with the Concept.IO API requires knowledge of the platform’s architecture,

including, in some cases, the need for reverse engineering to correctly access and interpret

the data transmitted via the MQTT bus. Furthermore, the complexity and volume of the

transmitted messages represent another obstacle, as high traffic can compromise analysis

performance, requiring the use of more complex processing and filtering strategies. An-

other relevant challenge lies in defining and validating the metrics used: it is important

that these are representative of the system’s objectives and reliably measurable (Cho;

Hurley; Xu, 2016), in order to ensure the credibility of the results.

With respect to the application of machine learning models, it is necessary to deal with

issues such as data quality and labeling, the appropriate selection of attributes, and the

risk of overfitting in small or noisy datasets. These aspects directly impact the model’s

ability to generalize patterns and provide useful classifications to support decisions.

Finally, the transformation of this data into comprehensible visual representations,

through interactive and informative dashboards, requires attention to the design and

usability of the interface, especially considering the different profiles of the users involved.

1.5 Structure of the Paper

This work is organized into six chapters. Chapter 1 presents the motivation, objec-

tives, benefits, and expected challenges in the construction of the plugin. Chapter 2

addresses the theoretical foundations necessary for understanding the project, including

concepts of Systems Engineering, agent-based simulation, metrics of effectiveness, and su-

pervised machine learning. Chapter 3 describes the methodology adopted, including the

operational environment, the simulation scenario based on the SIRESANT project, the

modeling of drone missions, as well as the processes of simulation instrumentation, data

collection, metric definition, and application of the predictive model. Chapter 4 presents

the results obtained, including a quantitative analysis of the metrics, the performance of

the classifier, and the visualization on the dashboard. Finally, Chapter 5 brings together

the conclusions of the work, reviews its limitations and proposes directions for future

studies.



2 Literature Review

2.1 Systems Engineering and Concept of Operations

Systems Engineering is an integrative approach focused on the conception, develop-

ment, operation, and sustainment of complex systems. It promotes the integration of

knowledge from various disciplines to generate a holistic view of the system and focuses

primarily on the interactions between the parts, bringing new perspectives on system

complexity, in addition to studying the emergent behavior that arises from these inter-

relationships. According to (INCOSE, 2015), the goal is to ensure that the developed

systems are fit for the purpose for which they were conceived, minimizing side effects and

unintended consequences during their operation in the real world.

In the context of Systems Engineering, there is continuous involvement of interested

parties, referred to as stakeholders, throughout the entire system lifecycle. These parties

may include end-users, operators, developers, regulatory bodies, among others, and their

contributions are fundamental for guiding development from the initial identification of

needs to the final system verification. According to (INCOSE, 2015), their needs, expecta-

tions, and constraints must be properly understood, analyzed from different perspectives

(technical, operational, and regulatory), reconciled through viable compromises between

conflicting interests, and then translated into clear, traceable, verifiable, and prioritized

requirements, serving as the basis for the development and evaluation of the proposed

solutions.

Figure 2.1 illustrates a typical sequence of steps in this process, starting with the

identification of stakeholders and the elicitation of their needs, followed by requirements

definition, performance specification, analysis and optimization, design and refinement,

and verification and reporting. Interaction with stakeholders occurs iteratively and con-

tinuously throughout all these phases, ensuring alignment between expectations and de-

veloped solutions. This structure is merely a representative example, as the number and

nature of the steps may vary depending on the type of system, the application domain,

and the specific needs of the project.

Within the initial activities of systems development, the Concept of Operations, also
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FIGURE 2.1 – Typical lifecycle flow diagram in Systems Engineering. (Fet; Haskins, 2023)

known as CONOPS, constitutes an important element for communication and alignment

among the stakeholders. It is a structured document that describes, in accessible language

and from the user’s perspective, how the system will be utilized in its predicted operational

environment. A CONOPS goes beyond a functional description, as it provides a strategic

vision that articulates operational objectives, typical and exceptional use scenarios, user

profiles, expected functionalities, operational processes, interactions with other systems,

and environmental factors that may impact performance (Engineering, 9 fev. 2025).

Furthermore, the CONOPS clearly defines the system’s capabilities, both functional

and non-functional, the methods of support and maintenance throughout its lifecycle,

as well as the performance indicators that will be used to measure its effectiveness and

efficiency. Therefore, it acts as a critical reference during all project phases, from initial

conception to the system’s operation and evolution. Its elaboration contributes to the

precise formulation of requirements, underpins acceptance criteria and testing, and guides

design decisions based on a unified understanding among all parties. This shared vision

helps prevent ambiguities, reduces the risk of undesirable scope changes, and ensures that

the final system effectively meets real operational needs.

Figure 2.2 represents the operational flow for the development and validation of sys-

tems for aircraft integration into urban environments, supported by the Arena Concept.IO

simulation platform. The scheme illustrates how different stages, from initial conception

to testing in simulated scenarios, are connected through digital models, communication via

the MQTT bus, and dashboards for performance analysis, within the scope of a project.

Its objective is, therefore, to ensure that the proposed scenarios can be tested, monitored,

and evaluated in real time, focusing on stakeholder decision-making.
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FIGURE 2.2 – CONOPS for aircraft integration into urban airspace, SIMUA-VD Project. (Cerqueira,
2025b)

2.2 Simulation Concepts

Simulations constitute an important tool in the development and evaluation of complex

systems, allowing for the execution of virtual experiments in controlled and repeatable

environments. In the context of Systems Engineering, simulation is used to anticipate

behaviors, validate requirements, explore design alternatives, and support decision-making

throughout the entire system lifecycle. According to (Vangheluwe, 2001), to simulate is to

conduct virtual experiments with models that are representative of real systems, within

an experimental framework that defines the objectives, variables of interest, and boundary

conditions of the simulation.

Arena Concept.IO, the focus of this paper, precisely represents this approach: it is

a distributed simulation environment that allows for the modeling and observation of

complex real-world system operations, offering an interface for stakeholders to configure

and monitor varied mission scenarios. These stakeholders can use simulation as a strategic

resource to anticipate system behavior under different conditions, assess risks, and validate

whether operational objectives are achievable.

The simulation process, as described by (Gianni; D’Ambrogio; Tolk, 2014), begins

with the construction of a conceptual model of the system, which is then transformed into

a computational model capable of being executed. This cycle includes verification activi-

ties (ensuring that the model has been correctly implemented) and validation (confirming

that the model adequately represents the reality intended to be simulated). In environ-
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ments like Arena Concept.IO, this structure allows scenarios to be created from varied

operational configurations, simulating both normal operations and exceptional situations.

Agent-Based Simulation (ABS) holds significant relevance in this context, as it allows

for the representation of autonomous entities with their own behaviors and objectives,

interacting in a complex and emergent way. As demonstrated by (Villas et al., 2024), this

type of simulation is effective for representing System-of-Systems (SoS) type systems, in

which multiple independent systems interact to achieve collective objectives, such as in

emergency response operations or coordinated missions. The use of structured approaches

for operational modeling allows different views of the system to be organized and facilitates

the exploration of alternative CONOPS by stakeholders, enabling real-time observation

of the impact of their decisions.

FIGURE 2.3 – Flow diagram of lifecycle in Model-Based Systems Engineering. (Villas et al., 2024)

FIGURE 2.4 – Verification and validation cycle among real system, conceptual model and simulation
model. (Vangheluwe, 2001)

In this scenario, simulation not only reproduces the system’s behavior but also acts as

an essential instrument for validating the operational strategies described in the CONOPS.
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Arena provides a platform to collaboratively develop, test, and communicate these strate-

gies, integrating multiple stakeholders. The data generated during the simulation, when

analyzed with appropriate tools, can provide insights into performance, safety, and op-

erational effectiveness. This data can be used to verify whether objectives are being

met as expected (through the use of metrics) or whether adjustments are needed in the

CONOPS, the system configuration, or the strategies adopted. This enables iterative

cycles of validation, refinement, and informed decision-making, increasing the alignment

between planning and the simulated operational reality, as seen in Figure 2.4.

2.3 Metrics of Effectiveness

In the context of Systems Engineering, metrics of effectiveness are important for eval-

uating a system in relation to its operational objectives. Effectiveness is related to the

system’s ability to fulfill its mission; that is, to achieve the expected results under de-

termined conditions of use, differing from efficiency, which focuses on the relationship

between resources utilized and results obtained (Press, 2025). Effectiveness is concerned

with whether the system successfully solves the problem for which it was designed. This

distinction is relevant in complex systems (INCOSE, 2015), where it is possible for a solu-

tion to be efficient in terms of resources but ineffective from the perspective of the mission

or some stakeholders, such as the end-users.

To ensure that a system is effective, it is necessary to define objective criteria that

allow its performance to be measured throughout the lifecycle. In this sense, metrics of

effectiveness act as essential instruments in the Verification & Validation (V&V) processes.

Verification is responsible for ensuring that the system has been built correctly with

respect to the specified requirements, while validation confirms that the system meets

the stakeholders’ needs in the intended operational environment. Based on the principles

presented by (Fet; Haskins, 2023), such metrics allow for the evaluation of functional and

non-functional requirements fulfillment, validation of design hypotheses, and identification

of behavioral deviations in simulations.

In complex systems, simulations offer critical support for decision-making by allowing

the anticipation of system behavior under different operational conditions. They make it

possible to test strategies, validate requirements, and explore extreme scenarios without

the risks or costs of real experimentation. To reliably fulfill this function, it is essential

that system performance be monitored continuously during simulated execution. This

requires defining appropriate metrics, aligned with objectives and integrated into the

virtual environment through tools, which depend on the context in which the simulation

is inserted. The correct interpretation of these results relies on a well-defined analytical
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structure that directly relates the stimuli applied, the data collected, and the evaluation

criteria, ensuring that the simulation provides relevant and applicable information to the

project’s decision-making context.

The metrics used in simulations vary according to the system objectives and the level of

fidelity required for the analysis. Among the most common are operational performance

metrics (Fet; Haskins, 2023), which aim to capture the efficiency with which system

functions are executed. Typical examples include event response time, area coverage in

distributed operations, and processing capacity, which measures the amount of tasks or

messages processed per unit of time. These metrics are particularly useful for evaluating

aspects such as scalability, latency, and the fluidity of the simulated operation.

Another important group are mission metrics (INCOSE, 2015), aimed at evaluating

whether the system’s final objectives have been achieved. They include the percentage

of task completion success, the number of failures that occurred during execution, and

the degree of adherence to the operational plan. These metrics are important in results-

oriented scenarios, such as search and rescue missions, cargo delivery, or defense, where

the focus is on mission completion with safety and reliability.

Resilience and adaptability metrics complement the analysis by assessing how the

system responds to failures, environmental changes, or component degradation. The time

required to resume normal operations after an interruption and the ability to adapt to

new operating conditions are examples. These metrics are important for systems operating

in dynamic or uncertain environments, such as urban operations involving autonomous

vehicles and remotely piloted aircraft.

Performance indicators, also known as Key Performance Indicator (KPI)s (Fet; Hask-

ins, 2023), are defined based on system requirements and serve as benchmarks for contin-

uous evaluation. They synthesize operational objectives into measurable values, allowing

for comparison between different configurations, architectures, or strategies tested in sim-

ulations. The proper choice of KPIs is necessary to ensure that the metrics directly reflect

the expectations of the stakeholders and serve as a reliable basis for design decisions.

Defining relevant metrics in simulations requires criteria that ensure their utility and

reliability. They must be clear and objective (INCOSE, 2015), avoiding ambiguity in

the interpretation of results. According to (Fet; Haskins, 2023), they also need to be

measurable during simulation execution, allowing for automatic collection and consistent

analysis. Furthermore, they must be directly relevant to the system’s objectives, reflect-

ing critical aspects of its performance. Finally, metrics need to have traceability to the

defined requirements and expected emergent properties, ensuring coherence between what

is measured and what is expected of the system in operation.
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2.4 Supervised Learning

Supervised machine learning is one of the main approaches in the field of artificial in-

telligence, characterized by the use of algorithms trained on labeled data. In this modality,

each input in the training set is associated with a known output, allowing the model to

learn to map relationships between variables with the goal of making future predictions

or classifications (IBM, 2025a).

During the training process, the model seeks to reduce the difference between predicted

and actual values through the optimization of error functions. This iterative adjustment

allows the system to generalize the acquired knowledge to previously unobserved data.

After training, the model’s performance is evaluated with separate data, ensuring its

capacity for generalization and avoiding overfitting.

Among the main tasks of supervised learning are classification, which involves catego-

rizing inputs into discrete classes, and regression, focused on predicting continuous values.

The choice between different algorithms such as decision trees, logistic regression, support

vector machines (SVM), or k-nearest neighbors (KNN) depends on factors such as the

nature of the data and the analytical objectives.

In the context of evaluating the classification model developed in this work, four main

metrics are commonly used (Kashyap, 2024). Precision indicates how many of the pre-

dicted positive cases are correct, while recall measures how many of the actual positive

cases were correctly identified. The F1-Score combines both measures into a single value,

useful when dealing with class imbalance. Lastly, support represents the number of sam-

ples belonging to each class in the dataset.

2.5 The K-Nearest Neighbors Algorithm

The k-Nearest Neighbors (KNN) algorithm is a supervised machine learning method

that is non-parametric and instance-based, used for both classification and regression tasks

(IBM, 2025b). Its operation is based on the assumption that examples close in the feature

space tend to belong to the same class or share similar values. In practical terms, the

algorithm assigns a label to a new instance based on the labels of the k closest examples

in the training set.

In the case of classification, KNN uses a “majority voting” strategy to determine the

most frequent class among the neighbors. For regression problems, the output value

is obtained by averaging the output values of the k nearest neighbors. An important

characteristic is that the algorithm does not perform an explicit training phase: all training

data is stored and used directly at the time of prediction, which characterizes it as a lazy
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learner method.

FIGURE 2.5 – Diagram illustrating the KNN algorithm’s operation. (IBM, 2025b)

The measure of similarity between samples is a central component in the algorithm’s

performance. The most common distance metrics include:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.1)

Another common option is the Manhattan distance (also known as the L1 distance),

calculated by:

d(x, y) =
n∑

i=1

|xi − yi| (2.2)

More generally, both can be seen as particular cases of the Minkowski distance, ex-

pressed by:

d(x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

(2.3)

The choice of the value of p defines the metric: when p = 1, the Manhattan distance

is obtained; for p = 2, the Euclidean distance.

The choice of both distance metric and the value of k (the number of neighbors)

can significantly influence the model’s performance, particularly when dealing with high-

dimensional data.

Among the algorithm’s main advantages are its simplicity of implementation, the

absence of assumptions about data distribution (due to being non-parametric), and its

adaptability to both classification and regression problems. On the other hand, its main

limitations include the necessity to store the entire training set in memory, the high com-

putational cost in large data volumes, and sensitivity to irrelevant attributes or variable
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scaling, thus recommending use of normalization and selection of characteristics.

The application of this algorithm in the context of simulations in agent-based systems,

such as those observed in the Arena Concept.IO platform, presents a possibility of uti-

lizing machine learning methods to capture emergent patterns in complex and dynamic

scenarios. Within the scope of Systems Engineering, this type of approach perfectly aligns

with systemic thinking and the need for global behavior analysis based on the interaction

between individual components.



3 Methodology

Arena Concept.IO is a platform focused on collaborative simulation of complex sys-

tems, with an emphasis on integrating multiple operational domains, including land, naval,

air, space, social and cyber contexts. This multi-domain approach enables different stake-

holders, with systems at various stages of maturity, to interact in a common scenario,

fostering the exploration of operational concepts, tactics, and procedures in a controlled

and adaptable environment.

Within this architecture, the VR-Forces simulator plays a central role in executing the

scenarios, being responsible for simulating the dynamic behavior of entities and generating

the events that occur in the virtual environment. It models, in real time, the actions

and interactions of the simulated entities and transmits the resulting data through the

MQTT communication bus. Arena Concept.IO, in turn, functions as the integration and

orchestration platform, connecting different simulation systems and analysis tools within a

collaborative multi-domain environment. This infrastructure provides the necessary basis

for collecting and processing the information generated during the simulations.

Based on the presented architecture, the objective of this project is to develop a plugin

that enables the analysis of data originated from the MQTT, promoting the structured

collection of relevant information for monitoring and evaluating the performance of the

simulated system. From this data, specific metrics will be developed to quantify emergent

properties and assess the fulfillment of the operational objectives defined for the scenario.

The metric calculations will be implemented using the Python programming language,

leveraging its robustness for data manipulation and analysis, as well as its simplicity for

script development.

The information extracted from the bus is currently stored in JavaScript Object No-

tation (JSON) files, serving as a preliminary structure for future modeling in a document-

oriented NoSQL database, such as MongoDB (MONGODB Inc., 2025). This approach

is well-suited to the dynamic and heterogeneous nature of the data generated during the

simulations, which may vary in structure depending on the scenarios, entities, and metrics

involved. The flexibility of this type of system allows for the storage of complete records

in independent documents, without the rigidity of fixed schemas, facilitating scalability
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and integration with analytical tools.

The ingestion and analysis pipeline will be implemented in Python, with results visu-

alized through an interactive dashboard developed using the Dash library. This interface

will enable stakeholders to intuitively explore the data generated during the simulation

through the upload of files containing the extracted records from the communication bus,

allowing for the post-simulation evaluation of system behavior and informed decision-

making.

In addition to data visualization, these records will also serve as the basis for the

development of a supervised machine learning model capable of classifying simulations

according to their degree of success (as successful, partially failed or failed). This clas-

sification will be based on metrics extracted during scenario execution, allowing for the

identification of recurring patterns in the behavior and performance of system entities,

specifically the drones. A supervised learning algorithm, KNN, will be used due to its

simplicity and efficiency in identifying similarities within labeled datasets. The goal is

to provide stakeholders with an additional decision-support tool capable of anticipating

trends and highlighting potential risks or inefficiencies in the tested operational strategies.

FIGURE 3.1 – Functional architecture of Arena Concept.IO, highlighting the simulation, visualization,
modeling and MQTT-based communication modules. (Cerqueira, 2025a)
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3.1 Tools

3.1.1 MQTT Bus

From a Systems Engineering perspective, Concept.IO presents itself as a solution for

orchestrating distributed simulations, in which each component of the simulated system

represents an autonomous functional element (independent node). Communication be-

tween these elements is carried out through a data bus based on the MQTT protocol

(Cerqueira, 2025a), which enables continuous information exchange among the various

subsystems, ensuring interoperability and consistency in the emergent behavior of the

system as a whole.

MQTT is a lightweight protocol widely used in distributed systems such as Internet

of Things (IoT), and is particularly well-suited for scenarios that require fast and reliable

responses even under network constraints (MQTT.org, 2025). Its publish-subscribe ar-

chitecture promotes decoupling between data producers and consumers, allowing simula-

tion elements to operate in a coordinated yet independent manner. This model facilitates

system scalability and supports modularity—key features for managing complexity and

requirements improvement.

Furthermore, the structure of MQTT enables continuous message exchange between

simulation elements, in accordance with arena’s distributed architecture. Since the broker

in use does not perform persistent storage, the platform currently prioritizes real-time exe-

cution. This limitation hinders post-simulation analysis and the reproducibility of results,

which motivated the implementation of a structured data logging mechanism within the

plugin, responsible for capturing, organizing and storing the messages exchanged during

the simulation.

3.1.2 VR-Forces

VR-Forces, part of the MAK ONE suite of applications, is a simulation platform

that covers a wide range of environments—from the ocean floor to outer space (MAK

Technologies, 2025). It was designed to represent entities, their relationships and

the effects of the environment in complex operations. One of its main features is the

ability to simulate multiple domains simultaneously, with a focus on real-time control and

monitoring, meeting the stakeholder needs previously mentioned. Its modular structure

separates the simulation engine from the user interface, which facilitates the development

of tools. This separation allows data to be collected via MQTT and processed analytically.

VR-Forces is capable of creating complex scenarios with multiple entities and automat-

ing events, which aligns perfectly with the plugin’s objective of identifying emergent prop-
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erties and key events during simulations. Moreover, it supports environmental variables

that change over time, such as local weather conditions, and is capable of working with

real-time data. This enables it to interpret environmental changes that may affect the

performance of the simulated system. One of the platform’s core functions is the synchro-

nization matrix, which helps divide the scenario into different time phases. This makes it

possible to plan coordinated actions based on specific events or conditions over time. In

this context, having a well-structured temporal logic is essential to identify patterns and

verify whether the established objectives are being achieved.

FIGURE 3.2 – Simulation using VR-Forces software. (MAK Technologies, 2025)

Finally, the architecture employs parallel processing to perform real-time calculations

in VR-Forces, serving as an important reference for those looking to implement strate-

gies for processing large volumes of messages transmitted via the MQTT bus. This is

particularly relevant given the high-performance requirements for capturing, interpreting,

and analyzing data in real time. The combination of these technical capabilities provides

a solid foundation for development, especially when it comes to integrating different do-

mains, dynamically evaluating scenarios and delivering qualified analytical support for

decision-making in simulated environments.

3.1.3 Scikit-learn

To implement the classifier responsible for predicting the status of missions, the Scikit-

learn library was used, which is widely adopted in Python-based machine learning projects.

This library provides a unified and efficient interface for various classification, regres-
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sion, and clustering algorithms, as well as tools for preprocessing, feature selection, cross-

validation, and performance evaluation (Habbema, 2024).

The classifier adopted in this work is the KNN, a supervised algorithm based on

similarity between samples in the feature space. The choice of this model is due to its

suitability for the type of problem at hand: the classification task involves a compact and

well-defined set of metrics extracted directly from the simulations, which favors approaches

that operate in low-dimensional spaces. Additionally, KNN is a non-parametric model

(Scikit-learn Developers, 2024), which eliminates the need for assumptions about data

distribution and allows for quick adaptation to new examples. Its interpretability is also

a significant advantage, especially in contexts where decision transparency is desirable,

such as in the performance analysis of simulated systems.

3.1.4 Dashboard

Dash is a Python-based library designed for building interactive web applications with

a strong emphasis on data visualization (Plotly Technologies Inc., 2025). Developed

on top of the Flask framework (for the backend) and React.js (for the frontend), it allows

engineers and data scientists to create sophisticated dashboards in a simple and rapid

manner. This characteristic makes it ideal for the project proposed in this work, which

requires presenting results clearly and dynamically to stakeholders.

FIGURE 3.3 – Example of a sales control dashboard built using the Dash library. (Academy, 2025)

In the context of this paper, the Dash library will be used to build a graphical interface

that enables retrospective analysis of the data generated during simulations, based on files
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exported from the MQTT bus. This data will be presented through interactive charts

that depict the evolution of spatial coordinates over time, allowing for the monitoring of

simulated entity behavior. In addition to visualization, Dash also provides features for

interacting with the data, such as filters, sliders, and menus, which allow users to adjust

parameters and explore the contents of the simulations.

3.2 Domain Context and Simulated Scenario

FIGURE 3.4 – Operational area defined by geofencing, and helipad exclusion zones.

For the development and validation of the plugin, the scenario of autonomous drone

delivery was selected. This is a representative domain of systems with emergent behavior,

chosen due to its operational complexity and the presence of characteristic properties of

Systems Engineering, such as distributed coordination, variability in mission time, and

adaptive response to failures.

The scenario of autonomous drone delivery was selected for the plugin’s development

and validation. This domain is representative of systems with emergent behavior, chosen

owing to its operational complexity and the presence of characteristic Systems Engineering

properties, such as distributed coordination, variability in mission time and adaptive

response to failures.
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The plugin was developed based on a subset of an ongoing project, SIRESANT, by

utilizing the provided simulation code specifically aimed at the study of autonomous deliv-

eries. This code models missions where drones perform deliveries in an urban environment,

simulating trajectories between stores and drop-off points, and transmitting data via the

MQTT bus. The published messages contain information such as the drones’ position,

delivery status, identification of stores, drop-off points and relevant events over time.

Figure 3.4 shows the simulated region, which corresponds to a section of the urban grid

of Curitiba, Brazil. The blue perimeter represents the drone operating area defined by

geofencing, while the orange volumes indicate no-fly zones around helipads, where drone

traffic is restricted.

To construct the simulation metrics, it was necessary to implement changes and add

new features to the original simulation code, as described in the following subsections.

3.2.1 Modification in Entity State Variables Publishing

Two main modifications were made to the Entity class to enhance temporal tracking

and the association between kinematic data and delivery orders.

The first change involved adding the timestamp field, which records the exact moment

the data is generated, in nanoseconds. This level of temporal precision enables tighter

synchronization of simulation events, allowing for detailed analysis such as measuring

intervals between consecutive publications (e.g., entity movements) and calculating the

total duration of missions.

The second change introduced the order_ref field in the message published by the

publish_kinematics method. This field references the delivery order ID associated with

the drone at the time of publication, making it possible to correlate movement data with

the corresponding active order. This modification was essential for the later analysis of

delivery-related metrics, such as travel time, route efficiency and mission completion.

In the Drone class, which inherits characteristics from the Entity class, new fields

were added to the message published by the publish_heartbeat method to enhance

monitoring of the drones’ operational state during simulation.

The first addition was the timestamp field, which captures the exact moment the data

is generated, in nanoseconds, enabling synchronized analysis with other system data.

Next, the status field was added to indicate the drone’s current state. Possible values

include idle (available), busy (on mission), and crashed (collision). This field provides a

clear view of the drone’s operational cycle and supports the calculation of metrics related

to resource utilization and availability.
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Finally, the order_ref field was included in the heartbeat message, allowing the drone

to be associated with a specific order even outside the kinematics stream. This information

is essential for tracking the link between entities and tasks over time.

3.2.2 Extension of the Order Class

The Order class, responsible for representing delivery requests during the simulation,

was extended to include detailed information about delivery progress and the operational

performance of the associated drone. The implemented modifications aim to make each

order instance traceable over time and integrated into the monitoring system.

The first addition was the stages attribute, a list that stores, in chronological order,

the key events related to the order’s lifecycle.

TABLE 3.1 – Order life cycle stages

Stage Stage (English) Description

preparando_pedido preparing order The order has been created and is being

prepared at the store.

pedido_pronto order ready The item is ready for pickup.

decolando taking off The drone has begun takeoff.

entregando delivering The delivery at the destination point has

started.

entregue delivered The item has been delivered.

entrega_concluida delivery completed The mission was successfully completed,

including the drone’s return to the store.

retornou_loja returned to store The drone has completed the logistics pro-

cess, returned to the store, and is available

for new deliveries.

The fields destination and store_name were also added to enable the publication of

this information on the MQTT bus, allowing the origin and destination of each order to

be explicitly identified in the transmitted messages.

Another added field is drone_id, which explicitly links the order to the drone respon-

sible for its execution. This association is essential for correlating drone movement data

with order events.

Additionally, the evasion_metrics structure was implemented to record statistics

related to evasion maneuvers during the mission.
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TABLE 3.2 – Evasion metrics recorded in the orders

Field Description

collision_avoidance_times Execution times of the maneuvers executed to avoid

collisions with other drones; each value corresponds to

an occurrence in collision_evasions.

helipoint_avoidance_times Execution times of the maneuvers performed to avoid

helipad restricted zones; each value corresponds to an

evasion recorded in helipoint_evasions.

collision_evasions Total quantity of successful maneuvers to avoid colli-

sions.

helipoint_evasions Total quantity of successful maneuvers to avoid helipad

exclusion zones.

failed_collision_evasions Counter of failed collision avoidance maneuvers, which

result in the drone’s movement being interrupted.

failed_helipoint_evasions Counter of failed helipad avoidance maneuvers, also

resulting in the interruption of the drone’s movement.

To consolidate this information in real time, the publish_order_update method was

created to publish the updated state of the order to the corresponding topic via the bus.

The message includes the order ID, status, stages, evasion metrics, store and destination

names and the associated drone.

The extension of the class allows for more detailed tracking of each order’s progress,

identification of operational failure causes and the collection of relevant metrics to evaluate

the performance of each mission.

3.2.3 Drone Collision Detection

To realistically represent the behavior of multiple drones operating simultaneously, a

mechanism for detecting direct collisions between aircraft was implemented during the

simulation. The detect_drone_collision function is designed to identify the moment

when two drones occupy positions that are sufficiently close in space, characterizing a

collision.

The detection is based on a continuous comparison of the positions of all active drones

in the scenario. For each drone, the function iterates through the all_drones_positions

dictionary, which stores the current coordinates of all vehicles and calculates the geodesic

distance between them. A collision is confirmed when two criteria are met simultaneously:
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FIGURE 3.5 – Simulation with multiple drones operating simultaneously.

• Horizontal distance: the distance between the drones, calculated from their geo-

graphic coordinates, is less than or equal to 0.7 meters;

• Altitude difference: the difference in altitude is less than 2 units, based on the

conversion factor applied to the altitude measurement in the code.

When these conditions are met, the function returns True, indicating that a collision

has occurred between the drones.

The “True” return value is used to immediately halt the flight routines of the drones

involved, update their status to crashed, and log the collision event on the MQTT bus

so that the monitoring system and the plugin can react and record the incident.

3.2.4 Intentional Collision Generation Function

To validate the robustness of the collision detection and response mechanisms imple-

mented in the system, an auxiliary function named launch_suicidal_drone was devel-

oped. This function is intended to induce controlled failures in the simulation by inten-

tionally forcing collisions between drones in order to verify the system’s response and the

accuracy of incident-related metrics.

The function is automatically triggered by the schedule_suicidal_launch routine,
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which runs periodically every 10 seconds. When activated, this routine dynamically in-

stantiates a suicidal drone 3.5 meters north of a preselected target drone, maintaining the

same altitude. The activation of this feature occurs with a 50% probability, randomly

defined at the beginning of the simulation. The suicidal drone’s trajectory is calculated

based on the direction from its initial position to that of the target, and the collision

is detected through periodic position overlap checks using the detect_drone_collision

function.

Once the collision is confirmed, the states of both drones are updated to crashed, and

the associated orders are marked with the collided stage. An event containing collision

data, including the identifiers of the drones involved, timestamp and geographic location,

is published to the corresponding topic.

Implementing this functionality was important for simulating drone collision scenar-

ios in a controlled manner and analyzing the simulator’s behavior in response to critical

events. Through these induced failures, it was possible to validate the operation of mon-

itoring, logging and state update mechanisms, as well as to verify the correct generation

of incident response metrics within the simulated environment.

3.3 Message Logging Module (MQTT Logger)

To enable comprehensive monitoring of the simulations run on the Arena Concept.IO

platform, a dedicated module was developed for the continuous capture and storage of

messages transmitted over the MQTT bus. Its main goal is to reliably log all relevant

events during the simulation, allowing for detailed analysis of the behavior of simulated

entities, especially the drones.

The system is composed of two main components. The first, implemented in the

MessageLogger class, is a generic logging mechanism responsible for recording all messages

published on MQTT, regardless of their type or origin. Messages are organized by topic

and stored in a structured file, forming a complete simulation log. This log makes it

possible to reconstruct the event timeline, inspect data traffic and support investigations

into system behavior under different scenarios.

The second component, implemented in the DroneDatabase class, is specifically de-

signed to track drone missions. It extracts and records key mission information such as

position over time, operational status, stages and metrics related to obstacle avoidance or

collision attempts. This data is stored separately in a local database organized by drone

and mission identifiers, enabling in-depth analysis of performance and emergent behavior

of the simulated entities.
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The data storage structure for drone missions is based on a hierarchical JSON format,

in which each drone is identified by its drone_id and linked to a specific order through

the order_id field. Based on this composite key, various aspects of the drone’s operation

are recorded, forming a complete and individualized history of its activity throughout the

simulation.

The stored data includes:

• Kinematic coordinates (coord): represent the drone’s flight path, containing the

time-sequenced latitude, longitude, altitude and timestamp. This data is updated

by the update_kinematics function in the simulation code and allows the recon-

struction of movement at any point during the mission.

• Mission destination (destination): defined through the set_destination func-

tion, represents the expected final position and is used as a reference to evaluate

delivery success.

• Current aircraft status (status): such as idle, busy, or crashed, updated by the

update_status function and essential for determining the final state of the flight.

• Mission stages (stages): recorded via update_stage, describe the progress of the

operation based on the milestones defined in the delivery flow.

• Evasion metrics (evasion_metrics): such as attempts and failures to avoid colli-

sions or helipads, updated through update_evasion_metrics, reflecting the behav-

ior of the navigation system in the presence of risks.

An example of the data structure stored for a typical drone can be found in Ap-

pendix A.1.

DroneDatabase acts as a black box for the simulation, continuously and systematically

documenting the most relevant parameters of each mission. This local database serves as

input for metric generation, failure identification, strategy evaluation, and, most impor-

tantly, the development of the machine learning model, aimed at predicting simulation

success.

The data collection process is carried out automatically through the module’s subscrip-

tion to specific broker topics. The on_message method, which acts as the client’s message

handler, is responsible for interpreting the topics and forwarding the extracted data to

the appropriate database update functions. Information is automatically extracted based

on the topic type and stored in the database in a structured manner.

To ensure data integrity and persistence, the module incorporates an autosave mecha-

nism, implemented by the _start_auto_save routine, which periodically writes the con-
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tent to disk (every 2 seconds). This guarantees data consistency even during long-running

simulations or in the event of unexpected interruptions.

3.4 Metrics for Evaluating Simulated Missions

To enable quantitative analysis of the missions simulated by the drones, specific metrics

were defined and implemented to capture aspects of efficiency and operational safety.

These metrics are extracted from the data transmitted over the bus and reflect the drones’

dynamic behavior over time.

FIGURE 3.6 – Drone approaching the delivery point.

3.4.1 Total Time in Evasive Maneuvers

The total_avoid_time metric represents the sum, in seconds, of the time the drone

spent performing evasive maneuvers, either to avoid collisions with other drones or to avoid

flying over helipads. It is calculated as the sum of the durations listed in collision_-

avoidance_times and helipoint_avoidance_times. This metric reflects the impact of

risk situations on the mission.



CHAPTER 3. METHODOLOGY 39

3.4.2 Number of Successful and Failed Evasions

Two distinct counts are used: collisions_evasions, which represents the num-

ber of successful evasive maneuvers (collision_evasions + helipoint_evasions), and

failed_collisions_evasions, which counts the failed attempts (failed_collision_-

evasions + failed_helipoint_evasions). These metrics indicate the level of risk ex-

posure and the effectiveness of the autonomous evasion system.

3.4.3 Average Distance and Variability Relative to the Destination

During the flight, the geodesic distance between each recorded coordinate and the

destination point is calculated. From these measurements, the average distance (avg_-

distance_to_dest) and the standard deviation (std_distance_to_dest) are extracted,

both expressed in meters. These values represent how close and stable the drone’s trajec-

tory was relative to its intended target.

3.4.4 Total Mission Time

The mission_time variable represents the elapsed time between the start and end

of the mission (based on the timestamps of the recorded coordinates), converted to sec-

onds. This metric includes both the trip to the destination and the return to base, when

applicable.

3.4.5 Normalized Mission Time (Z-Score)

To standardize comparisons between missions, the total mission time is converted into

a Z-Score based on the average and standard deviation of all mission durations in the

simulation. This metric, stored as mission_time_zscore, helps identify outlier missions

in terms of execution time and will be useful in the classification process.

3.4.6 Mission Status

Although not used as an input metric for the model, the status information is assigned

to the training data as a label. This enables the application of a supervised learning

model, trained on the previously described metrics, to classify new simulated missions.

Each mission can be classified as a“success” (delivery completed and returned to the store

without collision), “partial failure” (delivery completed, no return) or “failure” (mission

not completed or involved in a collision).
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3.5 Machine Learning Model

The supervised learning model developed in this work aims to classify the outcome of

each simulated mission into one of the three categories presented in Section 3.4.6 (success,

partial failure, or failure). To achieve this, the KNN algorithm was used, trained based

on the extracted metrics, as described in Section 3.4.

The development process included the steps of data collection and organization, at-

tribute preprocessing and instance labeling. The resulting structure served as the basis

for training and evaluating the classifier, with the goal of providing reliable classifications

of the missions.

3.5.1 Data Collection and Preparation

The data used for training the model were extracted directly from the generated sim-

ulation files. Each simulation contains JSON records with detailed information about

the drones’ trajectories, evasion events and mission stages. Based on these records, an

analysis routine was developed to automatically iterate through all files in the simulation

directory and extract, for each individual mission (identified by the drone-order pair), a

set of attributes organized in dict-type structures.

For each mission, the following metrics relevant to the predictive model are recorded:

• Total mission time;

• Total time spent in evasion maneuvers;

• Total number of evasion maneuvers;

• Number of unsuccessful evasion maneuvers;

• Average distance to destination;

• Standard deviation of distance to destination;

• Normalized mission time (Z-Score).

The data are organized in a main dictionary, indexed by a unique key in the format

<simulation>|<mission>|<drone>|<order>, which enables traceability and individual-

ized analysis of each instance.
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3.5.2 Mission Categorization

The labeling of each mission was performed automatically during the data extraction

stage, based on the events recorded in the stages field of the simulation files. This field

contains a list of the stages the mission went through, such as entregue (delivered),

retornou_loja (returned to store), and collided.

The classification logic is defined as follows:

• Success, when the stages include entregue and retornou_loja, and do not include

collided;

• Partial, when they include entregue but not retornou_loja, and also not col-

lided;

• Failure, in all other cases, especially when a collision occurs or the delivery fails.

These categories were automatically assigned to each mission during preprocessing and

constitute the target output variable used in training the classifier.

3.5.3 Exploratory Data Analysis

The Exploratory Data Analysis (EDA) stage aimed to understand the behavior of the

extracted variables, investigate relevant relationships and drive the selection of features

for the model.

Figure 3.7 shows the distribution of mission times. A high concentration of low values

can be observed, followed by a long right tail, which is typical of skewed distributions.

This indicates the presence of very short missions (usually associated with failures) and

greater variation in mission elapsed time among successful missions.
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FIGURE 3.7 – Mission time distribution.

Figure 3.8 shows the class imbalance, with a predominance of successful missions and

a significantly smaller quantity of partial missions. This asymmetry should be taken into

account during the model’s validation and evaluation stages, as it may affect performance

on minority classes.

FIGURE 3.8 – Mission categories distribution.

The analysis of mission time by category (Figure 3.9) confirms that failed missions

tend to have very short durations. Moreover, the greater dispersion in successful cases

suggests higher variability in expected behavior.
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FIGURE 3.9 – Mission time by conclusion category.

Figure 3.10 shows the heatmap of correlations between numerical variables. A strong

correlation was observed between mission_time and other variables such as std_dis-

tance_to_dest (r = 0.92) and mission_time_zscore (r = 0.80), indicating redundancy.

For this reason, the mission_time variable was removed from the feature set, retaining

those that provide more specific or normalized information.

FIGURE 3.10 – Heatmap of correlations between numerical variables.
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The relationship between the total number of evasions and mission time was also

explored (Figure 3.11). Although most points are concentrated in regions with few eva-

sions, some clusters of successful missions with a high number of evasions were identified,

indicating distinct operational patterns.

FIGURE 3.11 – Relationship between total quantity of evasions and mission time.

Finally, a closer inspection of missions classified as partial was carried out to better

understand their operational characteristics. It was observed that this type of mission

represents a small fraction of the total dataset, reinforcing the class imbalance previously

discussed. Nevertheless, they were retained in the training set to allow the model to

recognize intermediate patterns between success and failure.

Tables 3.3, 3.4 and 3.5 present a sample of these missions.
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TABLE 3.3 – Evasion metrics of partial missions

Mission Evasion Time (s) Evasions Failures

10 orders|drone database2|drone5.1|6907 0.3083 8 3628

10 orders|drone database2|drone7.1|2949 0.0000 0 3693

10 orders|drone database4|drone6.1|9208 0.0000 0 2470

10 orders|drone database4|drone1.1|8906 0.0747 1 3647

10 orders|drone database5|drone4.1|3881 0.0000 0 10536

20 orders|drone database1|drone3.1|4542 0.0000 0 10919

4 orders|drone database12|drone3.1|4056 0.0000 0 0

4 orders|drone database8|drone1.1|4818 0.0000 0 0

7 orders|drone database3|drone6.1|3022 0.0581 7 359

TABLE 3.4 – Distance-to-destination metrics of partial missions

Mission Mean (m) Standard Deviation (m)

10 orders|drone database2|drone5.1|6907 395.05 277.73

10 orders|drone database2|drone7.1|2949 377.66 267.65

10 orders|drone database4|drone6.1|9208 1098.97 692.55

10 orders|drone database4|drone1.1|8906 1269.13 848.93

10 orders|drone database5|drone4.1|3881 814.52 526.47

20 orders|drone database1|drone3.1|4542 1234.76 835.12

4 orders|drone database12|drone3.1|4056 1420.15 879.05

4 orders|drone database8|drone1.1|4818 1082.42 818.70

7 orders|drone database3|drone6.1|3022 560.98 376.94

TABLE 3.5 – Time and Z-Score of partial missions

Mission Time (s) Z-Score

10 orders|drone database2|drone5.1|6907 205.31 0.32

10 orders|drone database2|drone7.1|2949 196.84 0.27

10 orders|drone database4|drone6.1|9208 490.75 1.75

10 orders|drone database4|drone1.1|8906 305.78 0.65

10 orders|drone database5|drone4.1|3881 370.14 0.67

20 orders|drone database1|drone3.1|4542 550.18 0.80

4 orders|drone database12|drone3.1|4056 579.65 1.14

4 orders|drone database8|drone1.1|4818 377.60 1.42

7 orders|drone database3|drone6.1|3022 259.10 0.17
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3.5.4 Model Training and Validation

For the task of supervised classification of missions, the algorithm was configured

with weights assigned inversely proportional to the distance of the nearest neighbors. The

instances were initially split into training (80%) and test (20%) sets, preserving the original

class proportions via stratification. Then, the model was trained and evaluated using

stratified 5-fold cross-validation to obtain more robust and generalizable performance

estimates.

The hyperparameters chosen for the classifier included using the Minkowski distance

metric with exponent p = 2, equivalent to Euclidean distance, and assigning weights in-

versely proportional to distance, in order to ensure greater importance to closer neighbors

during classification.

The learning curve shown in Figure 3.12 evaluates the model’s average performance

with different values of k, ranging from 1 to 14, using 5-fold cross-validation. A high and

relatively stable average accuracy is observed between k = 1 and k = 5, with a slight

decline from k = 6 onward, indicating a loss of discriminative power as more neighbors

are considered. Based on this behavior, the value k = 5 was chosen as the final parameter,

as it represents a balance between performance and robustness, avoiding both overfitting

and loss of precision.

FIGURE 3.12 – Learning curve of the KNN model varying the number of neighbors (k).

The final model was evaluated using stratified 5-fold cross-validation, resulting in an

average accuracy of 95.7%. Figure 3.13 presents the confusion matrix obtained during val-

idation, while Tables 3.6 and 3.7 show the performance scores per class and the individual

accuracies for each fold, respectively.

The results indicate high performance for the “success” and “failure” classes, with
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FIGURE 3.13 – Confusion matrix of the KNN classifier (5-fold cross-validation).

precision, recall, and F1-Score values above 0.94. However, the “partial” class showed a

lower recall (0.43), indicating that some of these instances were incorrectly assigned to

the other categories. This limitation is likely related to the small number of examples

from this class in the training set, making it harder for the model to learn accurately.

TABLE 3.6 – Performance scores by class

Class Precision Recall F1-Score Support

Failure 1.00 0.91 0.96 70

Partial 1.00 0.43 0.60 7

Success 0.94 1.00 0.97 156

TABLE 3.7 – Accuracy achieved in each partition (fold)

Fold Accuracy

Fold 1 0.894
Fold 2 0.979
Fold 3 1.000
Fold 4 0.935
Fold 5 0.978
Mean 0.957
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3.6 Metric Visualization

A dashboard was developed to make the analysis of simulation data more accessible and

to facilitate result interpretation by stakeholders. The interface allows users to upload files

containing simulation logs, select the desired drone and mission, and view the information

in a clear and interactive format.

The dashboard is divided into two main tabs:

• Simulation Data: displays graphs of the drone’s trajectory over time (latitude, longi-

tude and altitude), with contextual information such as the final destination, mission

status, executed stages and a summary of evasive maneuvers. This visualization al-

lows users to closely follow mission behavior and identify relevant situations such as

deviations, failures or interruptions.

• Mission Evaluation: presents the metrics calculated from the simulation data, as

described in Section 3.4, and shows the classification result generated by the ma-

chine learning model. This evaluation provides a standardized indication of mission

performance, categorizing it as a success, partial failure or failure.

The system automatically processes the data after the file is uploaded, dynamically

updating all elements of the dashboard. This functionality enables fast and comparative

analysis across different simulations, making it easier to identify patterns and supporting

decision-making throughout the mission design and evaluation process. The developed

interface will be presented in Section 4.3, where its visual and functional aspects will be

discussed.



4 Discussions

4.1 Logger Implementation and Metric Definition

4.1.1 System Adaptations

During the development of the monitoring system, it became necessary to adapt the

pre-existing simulation to enable systematic data collection and detailed analysis of oper-

ational data. The original architecture, although functional for demonstrative purposes,

had not been designed with a focus on traceability, observability or performance evalua-

tion.

Among the most significant modifications is the introduction of specific metrics to

monitor evasion behaviors, both regarding potential collisions between drones and the

unintentional entry into defined exclusion zones, such as helipad areas. These indica-

tors allowed for the quantification of the navigation algorithms’ effectiveness when facing

dynamic obstacles and geographical constraints.

Additionally, a failure induction mechanism was inserted, based on the creation of

simulated entities with intentionally conflicting behavior, denominated “suicide drones”.

These agents, with routes programmed for the deliberate crossing of trajectories with other

active drones, were used as a resource to generate risk scenarios and validate the response

capability of the avoidance system. The inclusion of these entities, although artificial,

proved effective in provoking edge-case situations and collecting data representative of

operational failures.

Finally, the message structure published via MQTT was expanded to include new

topics and informative fields, covering not only the kinematic state of the drones but

also mission events (such as delivery stages), updates on the life cycle of requests, and

critical operational indicators, such as evasion attempts and collision occurrences. This

expansion of the informational mesh enabled the obtaining of more granular indicators,

consistent with the event timeline, and proved fundamental for the subsequent automated

classification of simulation results.
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4.1.2 Logger Operation and Data Storage

The logger was developed as an external module to the main simulation, integrated

directly into SIRESANT project. Its main function was to monitor the relevant MQTT

topics generated during simulation execution and log the data in real-time in the JSON

format. The storage structure adopted was designed to preserve the temporal sequence

of events, ensuring compatibility with trajectory reconstruction processes and subsequent

analyses.

In addition to kinematic and heartbeat messages, the logger captured publications

related to the evolution of requests (including different mission stages), evasion events,

and collision detection. Fields for signaling critical operational situations, such as delivery

failures or exclusion zone violations, were also included.

The modular structure of the logger, combined with the systematic use of timestamps,

allowed for the reconstruction of the simulations’ timeline. This approach enabled data

collection in a non-intrusive manner and with sufficient granularity to support the metric

analysis and predictive models applied in later phases of the project.

FIGURE 4.1 – Snippet of the drone database file, containing evasion metrics and coordinate logs over
time.
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4.1.3 Derived Metrics and Findings

With the persisted data, it was possible to derive specific metrics related to drone be-

havior in risk situations. These metrics included, for example, the time required to com-

plete collision avoidance maneuvers (collision_avoidance_times) and helipad avoid-

ance maneuvers (helipoint_avoidance_times), in addition to the count of successful or

failed evasions in both contexts. Data was logged individually per order, which allowed

for analysis segmented by drone, obstacle type and mission context.

The analysis of these indicators revealed, for example, that the frequency and duration

of evasive maneuvers increase significantly when multiple drones depart simultaneously

from the same store. In these cases, the spatial and temporal overlap of trajectories during

the initial delivery phases, especially during takeoff and the first moments of flight, creates

zones of higher operational density, raising the risk of collision and, consequently, the need

for deviations. This type of metric proved fundamental not only for evaluating the sim-

ulation’s performance but also for feeding the predictive model, for effectively classifying

the outcomes into the defined categories, based on the emergent patterns observed.

4.1.4 Challenges and Limitations Faced

One of the main challenges faced was the instability of the internal network where

the MQTT broker was hosted. On certain days, the connection became especially un-

stable, leading to frequent drops during simulation executions. Consequently, the logging

of several published messages was lost, compromising the integrity and completeness of

some collected data, especially in scenarios with a high publication rate. This instability

also hindered the execution of a larger number of simulations, since, in many cases, the

connection made continuous and reliable experiments infeasible.

Furthermore, reading the original simulation source code, especially the testecol-

is~ao.py file, required additional attention for implementing changes related to instru-

mentation and data collection. The strongly coupled structure between classes and the

logic distributed across multiple threads demanded careful analysis to prevent undesirable

side effects. The insertion of evasion metrics and the adaptation of MQTT topics to re-

port real-time events were especially challenging, requiring several iterations of testing,

fine-tuning, and manual validation of the execution flows.

4.2 Supervised Learning Model - KNN

The analysis of the results obtained with the machine learning model revealed signifi-

cant contributions to the task of classifying the success of the conducted simulations. The
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results were evaluated using two main instruments: the confusion matrix (Figure 4.2) and

the classification report (Table 4.1).

The confusion matrix indicates that the model was effective in accurately classifying

the majority of instances in the “success” and “failure” classes. However, the “partial”

class showed inferior performance, which can be attributed to the class imbalance in the

dataset, due to the low frequency of simulations with this status (uncommon occurrence).

Table 4.1 presents the metrics extracted from the classification report, including pre-

cision, recall and f1-score. The “success” class achieved the best indicators, with values

greater than 0.90. The “failure” class demonstrated equally high performance, with pre-

cision and F1-Score values greater than 0.90 and a recall of 0.82. The “partial” class had

the lowest values, indicating the model’s difficulty in learning representative patterns for

this category.

TABLE 4.1 – Classification report with metrics by class

Class Precision Recall F1-Score

Success 0.91 1.00 0.95
Partial 1.00 0.50 0.67
Failure 1.00 0.82 0.90

This limitation is noteworthy, considering that simulations classified as“partial” repre-

sent intermediate behaviors which, although not completely failed, may contain relevant

deviations to the stakeholders. Thus, expanding the dataset with more occurrences of

this class is necessary to increase the model’s robustness and generalization.

FIGURE 4.2 – Confusion matrix generated from test data.
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Nevertheless, the obtained results allow for the use of the model as a preliminary

decision-support tool. Its integration into the developed plugin offers an automated and

continuous way of evaluating simulations, contributing to the identification of unexpected

behaviors during the execution of the simulated scenarios.

4.3 Dashboard Visualization

The implementation of the interface for visualizing the metrics on the dashboard was

completed without relevant technical issues. The development occurred seamlessly with

the plugin structure, using the data automatically logged by the MQTT Logger, especially

those organized by the DroneDatabase class, which is responsible for structuring events

and information related to the simulated entities.

The metrics displayed encompass operational, behavioral and performance aspects of

the entities during simulations. This data is extracted from files in .json format generated

at the end of each execution and presented in a clear and intuitive manner to facilitate

interpretation by stakeholders.

The structured visualization of these data makes it possible to recognize behavioral

patterns, evaluate delivery efficiency, detect evasive maneuvers and collisions, and analyze

the progression of the simulations over time.

As an example, a file generated at the end of a simulation composed of six delivery

orders was used, including the intentional launch of a drone to provoke a collision. This

file contains the consolidated data from the DroneDatabase class routines, which is re-

sponsible for the structured logging of events from the simulated entities. Based on this

information, the dashboard presents the calculated metrics for each entity in an organized

manner. The following figures illustrate this interface and the arrangement of information

in the final visualization.

As an example, a file generated at the end of a simulation involving six delivery orders

was used, which also included the intentional launch of a drone in order to provoke a

collision. Based on these data, the dashboard displays, in an organized manner, the

metrics calculated for each entity. The following figures illustrate this interface and the

arrangement of information in the final visualization.
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FIGURE 4.3 – Initial interface of the dashboard with the selection of a specific drone for analysis.

FIGURE 4.4 – Selection of a specific order associated to the chosen drone.
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FIGURE 4.5 – Plots of latitude, longitude and altitude as a function of time for the selected mission.

FIGURE 4.6 – Display of additional mission information, including destination, status, stages, and evasion
metrics.
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FIGURE 4.7 – Final classification of the mission based on the extracted metrics.



5 Conclusion

The development of the proposed plugin for the Arena Concept.IO platform demon-

strated the feasibility of integrating, within a single environment, simulation monitoring

resources, quantitative metric analysis and machine learning. This integration allowed

the data produced during executions to be transformed into structured and interpretable

information, capable of supporting the evaluation of mission performance and the identi-

fication of emergent behavior patterns. In addition to strengthening the traceability and

observability of the simulated systems, it contributed to the creation of a solid analytical

foundation, focused on requirements verification and decision-making in complex Systems

Engineering contexts.

From a technical perspective, the implementation of the logger module with data stor-

age in JSON files enabled the structured and persistent logging of messages transmitted

via the MQTT bus, ensuring the temporal and contextual integrity of the data. This

architecture, combined with the interactive visualization offered by the developed dash-

board, facilitates the interpretation of simulations, allowing stakeholders and engineers

to monitor mission progress. The combined use of tools such as VR-Forces, responsi-

ble for executing the simulated scenarios, and Scikit-learn, applied to machine learning

analysis, reinforced the integration between the simulation and data processing stages,

consolidating the developed ecosystem as a coherent and functional solution.

In relation to the analysis methodology, the developed metrics proved effective in

characterizing critical dimensions of mission performance and efficiency. Indicators such

as total mission time, average distance to the destination, duration of evasion maneuvers,

and the number of registered failures allowed for the quantification of drone behavior with

some accuracy and the correlation of operational patterns with the results obtained. This

structure was essential not only for the descriptive evaluation of the data but also for

feeding the supervised machine learning model.

The application of the KNN algorithm to the set of extracted metrics confirmed the

model’s ability to distinguish, based on observable parameters, the different mission out-

comes, classifying them as success, partial failure, or failure. Even when faced with a lim-

ited and partially unbalanced dataset, the model demonstrated satisfactory performance
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and behavior consistent with the trends observed during exploratory analysis. This step

demonstrated the potential for using supervised learning techniques as an instrument for

decision support and automated validation of emergent properties in simulated systems.

The achieved results demonstrate that the proposal fulfills its main objective: to pro-

vide an integrated framework for collecting, analyzing, and visualizing simulation data,

capable of supporting requirements verification and effectiveness evaluation of complex

systems. Furthermore, the modifications made to the original simulation, including col-

lision detection and the introduction of drones with aggressive behavior, brought the

scenarios closer to a real context, enabling the controlled study of failures and a more

representative experimental analysis.

However, some limitations were identified. In certain executions, instabilities in the

connection with the MQTT broker caused interruptions in message transmission, reduc-

ing the number of valid simulations and compromising the completeness of part of the

collected data. In this sense, expanding the dataset and including new metrics represent

important steps to enhance the model’s generalization capacity and enable the use of more

sophisticated algorithms.

As suggestions for future work, we first highlight the conducting of new experiments

with the aim of expanding the database and, consequently, increasing the robustness and

reliability of the machine learning model. This expansion will allow for a more consistent

analysis and the identification of more complex behavior patterns.

Another relevant proposal is the implementation of the logger in real-time, such that

the control and monitoring of the simulation can be integrated directly into the dashboard,

providing instant tracking of mission progress. This functionality can be complemented

by modeling a dedicated database for storing simulation logs and metrics, allowing for

both historical queries and continuous analysis of the collected data.

Furthermore, it is recommended to expand the elements represented in the simulation

scenarios incorporating new types of obstacles, such as pedestrians and ground vehicles, as

well as other entities in simultaneous operation. This expansion would help bring the sim-

ulated environment closer to reality and allow for the study of more complex interactions

among heterogeneous systems. Extending the plugin’s functionality for other application

domains, such as maritime operations or multimodal logistics, is also suggested, broaden-

ing its scope and demonstrating its versatility in different operational contexts.

In summary, this work contributes to the advancement of using analytical and compu-

tational methods in the evaluation of simulated systems, demonstrating that the combina-

tion of well-defined metrics, structured data collection, and machine learning constitutes a

promising approach for the analysis and validation of complex systems within the context

of Arena Concept.IO.
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Appendix A - Storage in the MQTT

Logger

A.1 Mission Data Storage Structure

1 {

2 "drone1 .1": {

3 "order_12345": {

4 "coord": [

5 [

6 63769820611800 ,

7 -25.438739887054627 ,

8 -49.29495369539843 ,

9 47079.5

10 ],

11 [

12 63769923581900 ,

13 -25.438739887054627 ,

14 -49.29495369539843 ,

15 47050.0

16 ]

17 ],

18 "destination": "Praca da Espanha",

19 "status": "idle",

20 "stages": [

21 "preparando_pedido",

22 "pedido_pronto",

23 "decolando",

24 "entregando",

25 "entregue",

26 "retornou_loja"

27 ],

28 "evasion_metrics": {

29 "collision_avoidance_times": [

30 0.42

31 ],
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32 "helipoint_avoidance_times": [],

33 "collision_evasions": 1,

34 "helipoint_evasions": 0,

35 "failed_collision_evasions": 0,

36 "failed_helipoint_evasions": 0

37 }

38 }

39 }

40 }

A.1 –

Example of saved content for a typical drone.

Each entry in the coord field presents the elements in the following order: [times-

tamp, latitude, longitude, altitude].
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