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Abstract

Brazil’s rapidly expanding food-delivery market, with over $12,8 billion in 2024 and ex-
pected to grow to $27,9 billion in 2030, with a annual growth rate of 22%(FORUM, 2024),
exposes the drawbacks of a motorcycle-centric logistics model that intensifies congestion,
emissions and accidents. Recent regulatory advances — notably amendments to RBAC-E
94 and Brazil’s first BVLOS airworthiness certificate — now permit commercial drone op-
erations, motivating a comprehensive assessment of a Drone-as-a-Service (DaaS) solution
for urban last-mile delivery. This study draws on 1.05 million real orders from the Brendi
platform and deploys an end-to-end pipeline: data geocoding and cleansing, computa-
tion of air (Haversine) and street distances, derivation of a Distance-Shortening Rate,
placement of droneports through K-means and eigenvector centrality, fleet sizing with
an M/M/c queue, and segment-level energy modelling that factors in wind and rainfall
from ERA5 and INMET. These operational outputs feed a five-year discounted-cash-flow

framework whose CapEx and OpEx explicitly incorporate Brazilian compliance costs.



Resumo

O crescimento acelerado do mercado brasileiro de entrega de refeicoes — estimado em
$12,8 bilhoes de GMV, projetado para crescer até $27,9 bilhdes em 2030, com uma taxa
anual de 22%(FORUM, 2024) — expode as limita¢oes do modelo logistico baseado em
motocicletas, responsavel por agravamento do transito, emissoes de poluentes e elevada
sinistralidade. A atualizagao do RBAC-E 94 e a recente emissao do primeiro CAER para
voos BVLOS tornaram tecnicamente e legalmente viavel a adocao de aeronaves remota-
mente pilotadas na ultima milha. Este trabalho propoe avaliar a viabilidade logistica,
energética, regulatéria e econémico-financeira de um servigo Drone-as-a-Service (DaaS)
aplicado ao food-delivery urbano. A pesquisa utilizara 1,05 milhao de pedidos reais da
plataforma Brendi e seguird um pipeline que compreende: geocodificacao e higienizacao
dos dados; célculo de distancias aérea (Haversine) e vidria (Dijkstra); obtengao do indice
de encurtamento de distancia (DSR); localizacao de droneports por K-means combinado
a centralidade eigenvector; dimensionamento de frota via fila M/M/c; e modelagem en-
ergética trecho-a-trecho com ajustes para vento e precipitacao derivados de séries ERAS
e INMET. Esses médulos alimentarao um modelo de fluxo de caixa descontado a cinco

anos, no qual CapEx e OpEx incluem custos regulatérios nacionais.
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1 Introduction

The introduction aims to provide the reader with a clear and self-contained overview
of the problem that will be investigated throughout this work. To this end, the chapter
is structured in five moments. First, a contextualization of the food delivery market and
the negative impacts observed in the traditional logistics model based on motorcycles is
presented. Next, the requlatory and technological motivation that makes plausible — and
unprecedented in Brazil — the commercial use of remotely piloted aircraft in last-mile
routes is discussed. With this background established, the research problem that guides
the study is formulated, the hypothesis that will be tested is presented and, finally, the
specific objectives that will be pursued to answer it are made explicit. The logical sequence
of these sections introduces, gradually, the economic, social and academic relevance of the

theme, while delimiting the scope and evaluation criteria adopted in subsequent stages.

1.1 Contextualization

In the last two decades, food delivery has ceased to be a niche to become one of
the most dynamic segments of digital commerce. Estimates from the World Economic
Forum indicate that the Brazilian market moved approximately US$ 12.8 billion in 2024
and should grow to US$27.9 billion in 2030, with an annual rate of 22 %(FORUM, 2024).
This accelerated growth, however, exacerbates limitations of the predominant logistics

model — motorcycle delivery — which was conceived for much smaller volumes.

The massive presence of delivery motorcycles aggravates urban congestion: a survey
by CurbFlow points out that motorcycle deliveries are responsible for more than 20 % of
double-parking stops in downtown Sao Paulo(CURBFLOW, 2023). The social impact is
also reflected in accident rates: only between January and September 2024, 1,925 motor-
cyclists lost their lives on Sao Paulo roads(SP, 2024). From an environmental perspective,
dynamometer tests show that motorcycles can emit up to ten times more carbon monoxide
and hydrocarbons than standard Euro 6 light vehicles(SILVA et al., 2013). These factors
evidence a saturation point in the current model and justify the search for safer and more

sustainable alternatives.
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Brazil online food delivery services market, 2018-2030 (US$M)
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FIGURE 1.1 — Evolution of the global online food delivery market (2020-2030). Grand View Research’s
estimate projects growth from US$12.8 billion in 2024 to US$27.9 billion in 2030, corresponding to a
CAGR of 22 % in the 2025-2030 period(FORUM, 2024).

1.2 Regulatory and technological motivation

Brazil has, since 2017, a regulatory framework that allows commercial operations
with drones. The Brazilian Civil Aviation Regulation RBAC-E 94, updated in 2022, and
instruction ICA 100-40 from DECEA authorize Beyond Visual Line-of-Sight (BVLOS)
flights with aircraft up to 25 kg, provided they are equipped with redundant safety sys-
tems and properly certified. The practical legitimacy of this framework was confirmed in
2022, when Speedbird Aero received the first Special Airworthiness Certificate (CAER)
to perform deliveries in partnership with iFood(CIVIL, 2023a).

Furthermore, practical results obtained by commercial aerial delivery operators re-
inforce the relevance of this study’s proposal. Three experiences, in particular, serve
as benchmarks to calibrate adoption parameters, operational radius and revenue model:
Speedbird Aero in Brazil, Wing in the United States and Meituan in China.

Speedbird Aero & iFood (Brazil)

Speedbird Aero was the first Latin American company to receive from ANAC the
Special Airworthiness Certificate (CAER) for BVLOS operations with multirotor drones
up to 15 kg(CIVIL, 2023a). In partnership with iFood, it began regular flights in Aracaju
and Campinas, using the DLV-1 model to cover segments of up to 3 km in approximately
eight minutes. The process adopts a hybrid format: the drone takes off from a shopping

center, lands at a droneport in a residential neighborhood and a ground delivery person
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completes the last 400-600 m. By the end of 2024 approximately 30000 aerial deliveries
had been recorded, with an average reduction of 60 % in total time compared to motor-
cycle delivery.! Flights are charged in the pay-per-flight model (fixed fee passed to the

restaurant ), which approximates the DaaS concept evaluated in this work.

Wing & Walmart (United States)

Wing, an Alphabet subsidiary, operates last-mile services in Dallas—Fort Worth and
Phoenix. In June 2025 the company announced expansion of the partnership with Wal-
mart to one hundred stores, with capacity of "1 000 daily deliveries and service radius of
10 km(VINCENT, 2025). Orders are dispatched from small modular stations installed in
store parking lots; the flight is fully autonomous, from takeoff to landing on retractable
cable at the customer’s residence. For Walmart+ program members, aerial delivery was
offered at no additional cost, a strategy that increased adoption rate by 38 % in the first
month of operation. By April 2025 Wing reported more than 350 thousand global deliv-

eries, which demonstrates the technical maturity and economic scalability of the system.

Meituan (China)

Since 2021 Meituan has maintained ten fixed aerial routes in the city of Shenzhen, ap-
proved by the Civil Aviation Administration of China for corridors of up to 6 km in urban
areas. In 2022 the company surpassed the milestone of 100,000 delivered orders(GROUP,
2022), using multirotors with 8 kg maximum takeoff weight and standardized boxes of
2 kg payload. The end customer pays a premium of approximately ¥5 (=~ R$3.50) over
the conventional delivery fee and receives the order on average 15 minutes after confirma-
tion. Internal reports indicate operational cost 27 % lower than motorcycle delivery, due

to higher route density and elimination of traffic risk.

Together, these three examples demonstrate that drone delivery has already surpassed
the technological demonstration phase and begins to consolidate varied business models —
hybrid (Brazil), fully autonomous with subsidy (USA) and fixed tariffed corridor (China).
They provide performance metrics that will be used to validate the simulation developed
in this work, especially regarding total delivery time, operational radius and cost structure

per flight.

!Data disclosed in iFood press conference, Oct. 2024.
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1.3 Research problem

Given this context, the question is whether it would be logistically and economically
viable to implement, in a Brazilian city, a Drone-as-a-Service (DaaS) service dedicated
to meal delivery, taking as a pilot phase the order portfolio already intermediat ed by the
Brendi platform.

1.4 Hypothesis

It is hypothesized that a DaaS service dedicated to meal delivery is logistically viable
— capable of meeting a minimum Service Level Agreement (SLA) of 20 minutes and
reducing total delivery time compared to the traditional motorcycle-based model — and
economically viable — with operational costs comparable to or lower than motorcycle
delivery, considering the necessary infrastructure, regulatory costs and the operation scale

of the Brendi platform.

1.5 Objectives

This work intends to simulate a drone delivery operation in a chosen city, using real
orders as a basis for modeling. Based on this simulation, it seeks to size the necessary
infrastructure — including the drone fleet size and location of support points (droneports)
— capable of meeting a minimum Service Level Agreement (SLA) of 20 minutes, ensuring
that delivery time is lower than the traditional motorcycle-based model. From this sizing,
it is proposed to identify which deliveries could be migrated from the exclusive motorcycle

model to include the drone as a participating modality.

With the simulated and sized operation, the work aims to calculate capital costs
(Capex) and operational costs (Opex) necessary to implement this operation, covering
aircraft acquisition, droneport installation, safety equipment, regulatory certifications,
investments in management systems, maintenance, insurance, energy costs, remote pilot
compensation and administrative expenses, already incorporating the regulatory costs
provided for in RBAC-E94 and ICA 100-40. Finally, these costs are consolidated in
a financial structure that allows evaluating the economic viability of implementing this
model in the chosen city, comparing them with the costs of the traditional motorcycle-

based model and providing a quantitative basis for decision-making.
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1.6 Work structure

The text is organized in five chapters. Chapter 1 presents the contextualization, reg-
ulatory and technological motivation, research problem, hypothesis and study objectives.
Chapter 2 compiles the literature review on last-mile logistics with drones, energy model-
ing, queueing theory, financial evaluation and the national regulatory framework. Chap-
ter 3 describes in detail the data used, the sample selection criteria, the operational
simulation pipeline and the economic-financial model. Logistical and profitability results
are discussed in Chapter 4. Finally, Chapter 5 presents the work’s conclusion, synthesiz-
ing the main results, evaluating the research hypothesis, highlighting contributions and

pointing out limitations and future work.



2 Literature Review and Fundamentals

This chapter establishes, in detail, the theoretical concepts necessary for the logistical,
energetic and economic-financial modeling of the Drone-as-a-Service service studied in this
work. Whenever possible, complete formulas, underlying assumptions and limitations of
each model are presented, so that the reader can reproduce them without resorting to

other sources.

2.1 Logistical Fundamentals

The first step in modeling deliveries with drones is to understand how these aircraft
can fit into the existing distribution chain. Bine et al. (BINE et al., 2023) summarize the
possibilities in four configurations, shown in Figure 2.1. They range from Ground Delivery,
which relies 100% on motorcycle routes, to hybrid scenarios where drones execute only

part of the route.

Ground Delivery by Motorcycle Drone Delivery Mixed Delivery Mixed Delivery
Last-mile Delivery by Drone Last-mile Delivery by Motorcycle
.y L b
—— —
Restaurant ' Restaurant
b
/ / Depot [ Droneport
£ BAKERY | > /' Home 2 BAKERY ll /
b,

FIGURE 2.1 — Operational modes for meal delivery. (a) Ground Delivery: the entire route is made on the
road network. (b) Pure Drone Delivery: the package flies directly from the restaurant to the customer’s
home and returns. (c) Mixed — last-mile by drone: a ground vehicle takes orders to a depot, from where
drones cover the last mile. (d) Mixed — last-mile by motorcycle: the drone acts as an "air bridge” between
restaurant and droneport; motorcycles complete the final route for addresses outside the battery radius.
Red segments indicate package movement, while the blue band symbolizes the BVLOS air corridor.

Figure 2.1 illustrates that the choice of transport mode is not binary; it is a spectrum
that depends on customer location, drone autonomy and relative cost between air and
ground modes. To automatically decide where to employ each option, we resort to the
Vehicle Routing Problem with Drones (VRP-D), which extends the classic VRP by
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allowing aerial launches along the route. The next subsection presents the mathematical

formulation of VRP-D, its variables, constraints and solution heuristics.

2.1.1 Vehicle Routing Problem with Drones (VRP-D)

The classic Vehicle Routing Problem (VRP) seeks to determine the set of lowest-cost
routes that depart from a depot, visit each customer exactly once and return to the depot.
In the Vehicle Routing Problem with Drones (VRP-D), a ground vehicle (in this study, a
motorcycle) is combined with one or more drones, so that some customers can be served
by air, shortening total time or distance. The formulation below follows Li et al. (LI et
al., 2021) and includes time windows ( Time- Window VRP-D).

"""""""" @ 4 Distribution Centre

mmmy, Truck

3% Drone

[pr Customers served by trucks

@ Customers served by drones

—> Truck route

....... » Drone path

FIGURE 2.2 — Example of mixed motorcycle-drone routing with time windows, adapted from Han et
al. (HAN et al., 2023). Black customers are served by the motorcycle (solid arrows), while red customers
receive from the drone (dashed arrows). The depot (node 0) functions as the aerial launch and recovery
point. The image visually illustrates the logic that the VRP-D formulation seeks to optimize: reduce
ground distance and meet time windows by correctly allocating each customer to the most efficient mode.

Sets

e N ={1,...,n} customers;
e 0 depot (origin and return of motorcycle);

e V=N U{0} set of all nodes.

Parameters
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cz; cost (or time) of the motorcycle on edge (i, j);
c;;  cost (or time) of the drone from point 7 to j;
th, th

ground and air travel times;
a;, b; start and end of customer ¢’s time window;
S; service time at customer ;
B maximum autonomy (outbound + return) of the drone;

M  large constant to linearize implications.

Decision variables

x;;  binary variable (1 if motorcycle travels (i, j));
yi;  binary variable (1 if drone departs from i to serve j);

u;  instant when motorcycle service starts at node 1.

Mathematical model Objective function

min Z c;frj xi; + Z cf; Yij + Za (uZ —ai)Jr. (2.1)

1,JEV i,jEN iEN
A _/ N J/
Vv Vv Vv
ground cost air cost delay penalty

e [irst term: distance (or time) traveled by the motorcycle.
e Second term: accumulated cost of drone flights.

e Third term: penalty for each minute that service starts after the beginning of window

a;; (1) denotes mazimum between zero and the delay.

Constraints
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Zl‘ij = 1, Zxﬁ =1 Ve N (22&)

JjEV JjEV
> <1 Viey (2.2b)
JEN
wj > g+ s+t — M(1— 24) v(i,j) € V? (2.2¢)
up > ug + s+t +th — M(1— ys) Y(i,j, k) € V? (2.2d)
th+th <B Y(i, 4, k) (2.2¢)
a; < u; < b Vie N (2.2f)

(2.2a)

Each customer has exactly one arrival and one departure from the motorcycle.

(2.2b)

From that node, the truck can launch at most one flight.

(2.2¢)
If (¢,7) is on the route (z;; = 1), the clock must respect service and travel time;

otherwise, the inequality is relaxed by M.

(2.2d)
Ensures that the drone departs from i, visits j and returns to the truck at & before

it departs; linearized via M.

(2.2¢)

Outbound and return air distance limited to autonomy.

(2.2f)

Service can only start within window [a;, b;].

Solution heuristics Solving the exact MILP is NP-HARD; instances above 30 customers

become intractable in academic execution time. The most efficient approaches combine:

e Savings + Split: uses the Clarke-Wright algorithm to construct the ground route
and then ”"breaks” long edges that meet battery criteria to replace with drones
(WANG et al., 2019).

e Large Neighborhood Search (LNS-PD): randomly removes blocks of customers, rein-

troducing them via drone and motorcycle insertions iteratively.
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e Matheuristic Branch-and-Price + VND: solves exact sub-routes by column genera-
tion and applies Variable Neighborhood Descent to the global solution (see (CON-
CEIgaO et al., 2022) for Brazilian instances).

In practice, a drone operational radius of < 5 km (Class 3 BVLOS) is also imposed,

which drastically reduces the search space without loss of realism for meal deliveries.

2.1.2 Distance-Shortening Rate (DSR)

Delivering by drone is attractive especially when the air route is significantly shorter
than the ground route required by the road network. To quantify this geometric gain,
Bine et al. (BINE et al., 2023) proposed the Distance-Shortening Rate (DSR), a metric

that explains a relevant portion of the time savings obtained in air delivery simulations.

Definition Given an origin—destination pair (o, d), let da;, (0, d) be the Euclidean distance
and dsgreet (0, d) be the shortest distance over the road graph (obtained via Google Maps
API). DSR is defined as

dair (07 d)

DSR(0,d) =1 — —2 > 2/
( ) dstreet(07 d)

0 <DSR < 1. (2.3)

e DSR =~ 0 = nearly straight route; little to gain with flight.

e DSR — 1 = streets go around blocks/rivers; great potential for savings.

Why is it important?

a) Mode selection. High DSR indicates that the drone can reduce time substantially;
low DSR does not justify the extra cost of flight.

b) Droneport sizing. Bine et al. show a correlation of 0.82 between the 75th percentile

of DSR in a zone and the optimal number of air bases needed.

¢) Urban benchmark. Orthogonal layout cities (e.g., Manhattan) exhibit DSR ~ 0,30,
while historic centers with organic streets (e.g., Lisbon) reach DSR > 0,55.

Distance calculation To estimate the direct air distance between restaurant o and cus-
tomer d, the Haversine formula is used, established in position astronomy by Sinnott (SINNOTT,
1984). Assuming Earth as a sphere of mean radius R=6371 km, the geodetic coordinates

(p, A) in radians produce
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doiy = 2R arcsin(\/siHQ(%> + CoSp, COSPq sinQ(%)), (2.4)

where Ap = ¢4 — @, and A\ = Ay — \,. For pairs at a few tens of kilometers, the

relative error is < 0.1%, adequate for urban routes.

The road distance dgeer is Obtained by the shortest path (shortest-path) on the city’s
road graph. We employ the Google Maps API service, which:

a) provides optimized routes based on updated road network in real time;

b) considers current traffic conditions, allowing more accurate travel time calculations

that account for congestion;

c) offers greater precision in estimating distances and travel times, essential for correct

sizing of the delivery service.

Thus, the pair (dair, dstreet) feeds the DSR Equation (2.3), while the routing data
provided by Google Maps API will also be reused later in the motorcycle-drone route

simulation, ensuring greater realism and temporal precision in route calculation.

Calculation algorithm

1. For each order, geocode restaurant o and customer d (lat, lon).
2. Obtain dg;, via Haversine formula.

3. Obtain dgeet and travel time via Google Maps API, considering real-time traffic

conditions.
4. Apply (2.3); store DSR,;.

5. Summary statistics: mean, median and 25/75 percentiles.

2.1.3 K-means clustering and centrality

Implementing a Drone-as-a-Service requires defining where to install operation bases
(droneports) to cover most restaurants without multiplying infrastructure. The problem

translates into two sub-steps:

a) Group origin points using K-means, minimizing intra-cluster variance;

b) Choose, within each cluster, the most "influential” road node, measured by eigen-

vector centrality, but filtered by traffic flow to avoid already saturated zones.
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1. K-means algorithm Let {x;,...,x,} C R be the restaurant coordinates. Lloyd’s
classic objective ((LLOYD, 1982)) is

k
; 1
i T=30 > =l = D (2.5)

Jj=1 x;€C; xp€C;

A . A
l.:.
® o0
®o 0 m
®
® =
.'. ®e ®
o @ g [ ] ®
o ® l..' *

FIGURE 2.3 — Intuitive view of the K-means algorithm: before (left) points are distributed without
labels; after (right) the method partitions the space into k groups minimizing internal variance (LLOYD,
1982; ARTHUR; VASSILVITSKII, 2007).

Figure 2.3 evidences the role of K-means: transforming an amorphous set of coordinates
into cohesive clusters, each summarized by its centroid. It is this centroid that will serve
as a "raw candidate” for the initial location of droneports before applying the eigenvector

centrality filter.
Lloyd algorithm steps
1. Initialize centroids {p”, ..., '} with k-means++ (ARTHUR; VASSILVITSKII,

2007). 2. Assignment: for each point, choose the nearest centroid (Lo metric). 3. Re-

calculation: recompute p; by (2.5). 4. Repeat 2-3 until convergence (AJ < ¢).
Complexity: O(nkdI), where I is the number of iterations (generally < 10).

Choice of k. We use the "elbow” criterion: plot J(k) vs. k and choose the smallest
k beyond which the marginal reduction of J becomes negligible; equivalent to the point

where the curve forms an elbow.

2. Eigenvector centrality Once clusters are defined, we map each street in the cluster
to a directed graph G = (V, E). Eigenvector centrality measures how well connected a
node is to other also central nodes (BONACICH, 1987):

Ace(v) = ZA”“ c(u), c(v) >0, (2.6)

ueV
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where A is the adjacency matrix (weighted by length or flow) and A is the largest

eigenvalue of A. We interpret c¢(v) as "topological influence”.

3. Droneport selection Inspired by Bine et al. (BINE et al., 2023), we filter only vertices

with moderate vehicle flow — above the mean, but not so high as to create a bottleneck:

T= {U eVv: How < f(U) < Hfiow T Uﬂow}y v = argme%g(c(v).

This vertex v* becomes the droneport of the cluster.

(a) Flow of vehicles (b) K-means (c) Algorithm 1

FIGURE 2.4 — Three-step procedure to locate droneports, according to Bine et al. (BINE et al., 2023).
(a) Aggregated vehicle flow (0-24 h); lighter roads concentrate greater traffic. (b) K-means result with
k = 3, revealing relatively homogeneous zones. (c) Final position of droneports after applying the flow
filter and selecting the node with highest eigenvector centrality in each cluster.

Revisited example — synthesis of Bine et al.’s method Figure 2.4 reproduces, on a
reduced scale, the procedure detailed by Bine et al. (BINE et al., 2023). In panel (a) the
road graph is colored by vehicle flow obtained via GPS data and traffic counts; panel (b)
shows the K-means partition into three clusters (k selected by the elbow of J(k)); finally,
panel (c) highlights, in orange, the vertex with highest eigenvector centrality within the
flow interval [faoy, ffow + Tflow) — exactly the algorithm presented above. The authors
report an average reduction of 18 % in droneport—customer distance compared to a merely

geometric choice, empirically validating the criterion adopted in this work.

2.14 M/M/c queue — fundamentals and sizing

When several drones depart from the same droneport, the system can be seen as
¢ parallel "servers” that serve independent orders. The classic assumption — widely
validated in meal delivery (FIGLIOZZI et al., 2021) — is Poisson arrivals with rate A
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(orders/h) and service times Exp(u) with mean 1/p hours per order (flight + battery
swap). The resulting model is a Kendall M/M/c queue.

Concept and notation In queueing theory, Kendall’s notation A/B/c describes a system
with three fundamental characteristics( KENDALL, 1953):

e A — arrival distribution. The letter M (“Markovian”) indicates a Poisson process,

that is, the inter-arrival time is exponential with rate .

e B — service distribution. Another M means that service duration is also exponen-

tial, with mean 1/p.

e ¢ — number of parallel servers (simultaneous drones in our case).
A M/M/c queue also assumes:

e Infinite queue capacity (no order is lost);
o First-Come, First-Served service discipline;

e Infinite customer population — arrival of an order does not alter the global rate .

The model is analytical because the system state (N = number of orders) forms a
continuous-time Markov chain; the closed formulas for P(N = n), W, and W (seen

below) derive from this property.

Why M/M/c for drones? Food order arrivals usually follow Poisson in intervals of 5-15
min(FIGLIOZZI et al., 2021), and the natural variability of flight time (and battery
swap) approximates an exponential. Furthermore, multiple drones departing from the
same droneport fit the parameter ¢. Thus, M/M/c offers a balance between realism
and analytical simplicity to size the minimum fleet that respects the SLA. The M/M/c
model is adopted as a long-term equilibrium approximation, recognizing that SARPAS-

NG operational windows and hourly peaks may introduce non-Poissonian behavior.

Parameters and notation

p=— (utilization rate, must be < 1); a= é
cp u
State probability
Oén_T 0, 0<n<c, el on e 1
PIN=n)=13 "n s PO:[;F A= p)
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Average waiting time (Erlang-C)

af PW 1
Y da=p) " T e — N q+,u (27)
Symbol legend
A Average arrival rate of orders (orders per hour).

1 Average service rate of each drone (orders completed per hour); 1/u is the average

cycle time.
c Number of parallel servers (drones operating simultaneously).
p=72

System utilization (fraction of time drones are busy).

a=2
o

Aggregated traffic rate; auxiliary notation to simplify powers in terms o”.
Py  Probability of the system being empty (no order in service or queue).
Py Probability of an order finding a queue (all drones busy at arrival instant).
W, Average queue waiting time (hours), calculated by Erlang-C formula.

W=W,+1/u

Average total time in system (waiting + service); must be less than or equal to SLA.

N Random variable "number of orders” in system; P(N = n) is given by the piecewise

distribution (customers < ¢ and > c¢).

As shown by Gross & Shortle (GROSS et al., 2018), (2.7) minimizes W for a given
SLA by choosing the smallest integer ¢ that satisfies W < SLA.

2.2 Drone energy modeling

The energy consumption of a multirotor impacts (i) OpEx, since electricity is propor-
tional to Wh consumed, and (ii) CapEx: the larger the battery, the greater the weight
and number of packs needed to maintain flight cadence. Therefore we use a segment-by-

segment model that decomposes power into three components, according to momentum

and blade-element theory (LEISHMAN, 2006; DORLING et al., 2017).
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Symbol table

m  total mass (drone + payload) [kg]

g  gravitational acceleration (9.81 m/s?)
p  air density (1.225 kg/m? at sea level)
A rotor disk area (7R?) [m?]

S frontal body area [m?]

Cp body drag coefficient

V' drone forward velocity [m/s]

v,  headwind component [m/s]

n overall electrical-mechanical efficiency

2.2.1 Power in stationary flight (hover)

Froude’s theory gives the induced velocity at the disk v; = y/mg/(2pA). The ideal

power would be P; = mg v;. Correcting for electrical and propeller losses (n ~ 0.72) yields

(mg)®/?

Pover: . 2.8
NG %)

2.2.2 Power in translation

During cruise, the parasitic power of the body is added (SIVRIOGLU; TEMIZ, 2020):

Pparasite = %pSOD (V + Uw)g' (29)

The cubic term shows strong sensitivity to headwind: a 20

2.2.3 Energy per order

We divide the route into N segments (climb, outbound cruise, descent, return cruise,

landing hover):

N

Epedido - Z [Phover,k + Pparasite,k Atk; Atk =
k=1

di,

_ 2.10
Vi + v, cos 0, ( )
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Blade profile power (< 5% of total at low Reynolds) was absorbed into Py via factor
n, following Filiopoulou et al. (FILIOPOULOU; AL., 2025).

Calculation procedure — step by step

1. Segment the flight: divide each delivery into climb, outbound cruise, descent, return

cruise and landing hover.

2. Compute powers: for each segment, apply (2.8) (hover) and (2.9) (parasitic), con-

sidering segment mass (loaded or empty) and projected wind vector.

3. Time estimate: Aty = di./(Vi + v, cos ), where Vj, is cruise velocity and 6y, is the

relative wind angle.
4. Energy summation: Epcgidzo = Y1 (BPoverk + Prarasite k) Atk

5. Validate battery: ensure that Epeqiqo < 0.9 Epa; otherwise, classify the order as

"not serviceable by drone”.

Integration into cash flow For a 12-month horizon, total energy is F.,, = Zgﬁ‘i“ Epedido,p-
Multiplying by the average residential tariff of R$0,73/kWh (ANEEL/2025) yields the
annual electricity cost, a direct OpEx item. The model also tracks the number of charge
cycles per battery; dividing the pack acquisition cost (Cha) by Cycles ,q, =~ 400 yields

unit depreciation, which enters as amortized CapEx.

2.3 Economic—financial evaluation

The viability of an aerial drone delivery system must be evaluated from two com-
plementary perspectives: (i) logistical efficiency (as modeled in previous sections) and
(ii) economic-financial sustainability, which determines the operational capacity of the

service compared to the current motorcycle delivery model.

Before evaluating investment attractiveness for stakeholders — which would require
long-term return analyses, net present value and risk metrics — it is fundamental to
establish whether the DaaS model can operate with competitive OpEx relative to the
ground mode. This is a critical prerequisite: if even in a simplified analysis the drone’s
OpEx significantly exceeds that of the motorcycle, there is no point in advancing to

investor return analyses, as the model would not be operationally sustainable.

The approach adopted in this work consists of calculating the CapEx and OpEx of

the drone service and comparing them directly with the costs of the motorcycle delivery
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model, establishing an acceptable OpEx target that allows competing in the current
market. Once this operational viability is achieved, the next steps for an investor return

analysis in long-term horizons can be envisioned.

Cost structure

CapEx (Capital Expenditure). Represents the capital investment made in year zero.
For Daa$S, this includes: drone acquisition (or long-term leasing contract), extra batteries
(sized based on energy per delivery from Section 2.2), parachutes, embedded sensors,
droneport structure, control software, communication infrastructure, regulatory licensing

and operator training.

This value immobilizes resources and, in general, does not have liquidity in the short
term. However, the analysis proposed here initially focuses on operational cost compari-

son, leaving the impact of CapEx on long-term profitability for later stages of evaluation.

OpEx (Operational Expenditure). These are recurring operational costs per unit of time

(generally monthly or annual). In the case of DaaS, the main components include:

e Electricity consumption (estimated in Section 2.2, with wind correction);

e Preventive and corrective maintenance (replacement of rotors, sensors and batter-

ies);
e Aircraft and civil liability insurance;
e Remote operator and support staff salaries;
e Navigation and communication software amortization;
e Leasing cost (if drones are rented instead of purchased);

e Operational licenses and regulatory fees.

OpEx directly affects profitability per delivery and determines service competitiveness
relative to the motorcycle model. Therefore, it is the central indicator of this preliminary

viability analysis.

Comparison with the motorcycle model

To establish DaaS operational viability, we compare the OpEx per delivery of the
drone service with the equivalent OpEx of the current motorcycle delivery model. This

comparison allows identifying:
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a) Immediate competitiveness: whether the drone’s OpEx is within an acceptable
range relative to the motorcycle (possibly tolerating a premium justified by logistical

advantages, such as shorter delivery time);

b) Target OpEx goal: what should be the maximum operational cost per delivery for

the model to be viable in the current market;

c) Component sensitivity: which OpEx items (energy, maintenance, insurance, etc.)

most impact competitiveness and where optimization is possible.

If the drone’s OpEx significantly exceeds that of the motorcycle — even considering
eventual efficiency gains — the model would not be operationally sustainable, regardless
of investor return potential. On the other hand, competitive or even lower OpEx than
the ground mode opens the way for deeper financial return and investor attractiveness

analyses in medium and long-term horizons.

Next steps

Once operational viability is established through CapEx/OpEx comparison, the anal-

ysis can evolve to:

e Investor return evaluation through metrics such as Net Present Value (NPV), Return

on Investment (ROI) and payback time (pay-back);

e Sizing of the necessary initial investment and structuring of financing or leasing

models.

However, this more advanced stage only makes sense after confirming that the model
operates with acceptable OpEx compared to the ground alternative — which constitutes

the main focus of this section.

2.4 Brazilian regulatory framework

For commercial drone delivery operations in urban areas in Brazil, the regulatory
framework follows mainly RBAC-E No. 94 (CIVIL, 2023b), complemented by regulations
from ANAC, DECEA (AEREO, 2022) and ANATEL (OES, 2019). In this study, we
consider the scenario of Class 3 drones (maximum takeoff weight up to 25 kg), operating
BVLOS (Beyond Visual Line of Sight), with partial flight autonomy.



CHAPTER 2. LITERATURE REVIEW AND FUNDAMENTALS 37

Technical and operational requirements

Below, we list the main legal requirements and their direct impacts on system model-

ing:
e Maximum takeoff weight (MTOW): limited to 25 kg.

— Imposes limit on drone mass, battery and payload.

— Already considered in energy modeling and determines viability of multiple

deliveries per flight (CapEx x routes trade-off).
e Maximum speed: 120 knots (=~ 222 km/h).
— No direct practical impact on DLV-1, whose cruise speed is lower.
e Operational ceiling: 400 ft AGL (=~ 120 m), except specific NOTAM.

— Limits cruise altitude, affecting aerodynamic performance and energy consump-

tion modeling in cruise.
e Mandatory safety equipment:

— Remote kill-switch and certified emergency parachute.

— Add costs per drone in CapEx, according to current market quotation (BRASIL,
2023).

— The additional parachute mass must be added to the aircraft empty weight
(impacting energy per delivery).

e Mandatory flight plan (SARPAS-NG):

— Request must be sent with > 24 h advance (ICA 100-40) (AEREO, 2022).

— Restricts operational flexibility, requiring scheduled takeoffs in waves (batch

scheduling).

— Reflected in the M/M/c queue model as arrival concentration and demand

peaks in fixed windows.
e Mandatory insurance (RC-RETA):

— Civil liability with minimum coverage of R$ 500 thousand (PRIVADOS, 2021).
— Added to annual fixed OpEx.

e Radio station licensing (ANATEL):

— Drones with control link above 1 W power must be certified (OES, 2019).
— Added to CapEx, in addition to certification time (=~ 3 months).
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Integration into the technical-economic model

All requirements above were integrated into the model as follows:

e CapEx — costs with parachutes, certifications, kill-switch and ANATEL fee.

e OpEx — insurance and regulatory audits compose the annual fixed cost and directly

impact cash flow.

e Energy model — altitude and weight restrictions alter flight efficiency and autonomy
(Section 2.2).

e M/M/c queue — the need for operations in hourly windows (SARPAS-NG) intro-
duces arrival peaks (non-Poisson) and may generate higher waiting times in critical

periods.

Furthermore, the operational team will need to be trained and certified to operate
drones in BVLOS according to RBAC-E 94 guidelines (CIVIL, 2023b), which adds training

costs and may represent entry barriers in regions with shortage of certified operators.

2.5 Related work and positioning

This section positions the present work in the context of existing literature, highlight-
ing specific contributions and characteristics of the Brazilian context that differentiate it

from previous studies.

Similar work in the literature

Several studies address the problem of routing with drones in last-mile deliveries,
but most focus on international contexts and do not incorporate the specificities of the

Brazilian regulatory and operational market.

Routing and optimization. Li et al. (LI et al, 2021) and Han et al. (HAN et al.,
2023) propose mathematical formulations for VRP-D with time windows, which serve
as the theoretical basis for this work. However, these studies do not consider batch
operation restrictions (batch scheduling) imposed by the Brazilian SARPAS-NG system,
which significantly alters the arrival pattern and queue modeling. Furthermore, works
such as Wang et al. (WANG et al., 2019) and Conceicao et al. (CONCEI¢aO et al., 2022)
develop efficient heuristics for VRP-D, but do not integrate detailed energy modeling nor

comparative economic-financial analysis with the ground model.
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Infrastructure location. Bine et al. (BINE et al., 2023) introduce the DSR index and
propose a methodology for droneport location using K-means and eigenvector centrality,
a methodology that is adopted and adapted in this work. However, Bine et al. validate
their method in cities with urban layout distinct from the Brazilian context (e.g., Lisbon,
European cities), where population density and road network present different character-
istics. This work adapts the methodology to the Brazilian urban context, incorporating

real vehicle flow data and demand patterns from the Brendi platform.

Energy modeling. Studies such as Filiopoulou et al. (FILIOPOULOU; AL., 2025)
and Sivrioglu et al. (SIVRIOGLU; TEMIZ, 2020) present energy consumption models
for drones, but often consider only ideal cruise scenarios, without incorporating wind
variations, variable mass during flight and operational altitude restrictions (400 ft AGL
from RBAC-E 94). This work integrates these variables into the energy model, resulting

in more realistic estimates for the Brazilian context.

Economic-financial evaluation. Literature on economic viability of drone deliveries is
still incipient, especially for the Brazilian market. International works often assume en-
ergy, insurance and regulatory costs different from those observed in Brazil. This study in-
corporates real residential electricity costs (R$0,73/kWh according to ANEEL/2025), RC-
RETA insurance premiums according to quotation (SEGUROS, 2024), and ANAC/DECEA

certification costs, providing a CapEx/OpEx analysis specific to the national context.

Specific characteristics of this work’s context

This work differentiates itself by incorporating the following specific characteristics of

the Brazilian context:

a) Real data from the Brendi platform. Unlike studies that use synthetic data or
from other international platforms, this work is based on real orders intermediat
ed by the Brendi platform, capturing demand patterns, geographic distribution of

restaurants and customers, and time windows specific to the Brazilian market.

b) RBAC-E 94 regulatory framework. All operational restrictions of the Brazilian
regulation are incorporated into the model: maximum weight of 25 kg, operational
ceiling of 400 ft AGL, mandatory parachutes and kill-switch, need for SARPAS-
NG flight plans with 24 h advance, and RC-RETA insurance coverage of R$ 500
thousand. These restrictions directly impact operational viability and costs, differ-

entiating this study from works that assume more flexible regulations.

c) Direct comparison with motorcycle delivery. The economic-financial analysis ex-

plicitly compares the OpEx of the DaaS service with the operational costs of the
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current motorcycle delivery model in Brazil, establishing an operational competitive-
ness goal. International works often compare drones with generic ground vehicles,
without considering the specificities of the motorcycle delivery model predominant

in the Brazilian market.

Validation with international practical cases. Simulation results are validated
against metrics reported by real commercial operators (Speedbird Aero in Brazil,
Wing in the USA, Meituan in China), ensuring that the model captures behaviors

observed in commercial operations at scale, not just pilot demonstrations.

Contributions and differentiators

In summary, this work contributes to the literature by:

Integrating logistical (VRP-D), energetic and economic-financial modeling in a unique

framework for DaaS viability evaluation;

Adapting consolidated methodologies (DSR, K-means, M/M/c) to the Brazilian

regulatory and operational context;

Using real data from a national delivery platform, capturing specific patterns of the

Brazilian market;

Providing quantitative CapEx/OpEx comparative analysis with the motorcycle de-

livery model, establishing objective operational viability criteria.

With these mathematical, energetic and regulatory foundations established, we pro-

ceed to the data collection and simulation methodology described in Chapter 3.



3 Materials and Methods

In this part of the work we move from theoretical foundation to practical application.
Our objective is to demonstrate, end-to-end, how to transform raw order data into logisti-
cal, energetic and economic-financial indicators capable of answering the research question
formulated in Chapter 1. This chapter describes, therefore, the complete pipeline — from
datasets used to cash flow construction — highlighting the advantages and limitations of

each technique employed.

To guide the reader, the section is organized as follows:

e Section 3.1 — Data and inputs: presents the origins, justifications and formats of
the data used (Brendi orders, Google Maps road network, ERA5/INMET climate

series and cost tables), in addition to the preprocessing applied.

e Section 3.2 — City and period selection: details the selection criteria for the pilot

area — demand density and temporal stability.

e Section 3.3 — Operational pipeline: describes, step by step, the computational meth-
ods: distance calculation (Haversine x Google Maps API), DSR index, droneport
location (K-means + eigenvector centrality), modal classification of orders and fleet

sizing via M/M/c queue.

e Section 3.4 — Economic-financial model: presents the CapEx and OpEx tables for

the two compared scenarios (Motoboy and DaasS).

e Section 3.5 — Tools and reproducibility: lists the development environment (Python
3.11, Docker, Google Routes API, libraries for geospatial and data analysis), simu-

lation tools (SimPy) and the Git repository that ensures traceability of results.

This structure ensures that each component — data, analytical methods and finan-
cial metrics — is presented transparently and reproducibly, allowing other researchers or

market actors to repeat the experiment or adapt it to their contexts.
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3.1 Data and inputs

This section describes, in detail, the sources, formats and preprocessing that will be
planned to feed the pipeline presented in Section 3.3. Table 3.1 summarizes the main
characteristics of each dataset; in the following subsections, it is explained how each

resource should be obtained, cleaned and employed in the model.

TABLE 3.1 — Overview of datasets employed.

Dataset Format Relevant fields Function in
model
Brendi Orders CSV Order ID, Estimation of A,
Store/Customer DSR, revenues

lat/lon, Date, Order
Total Price, Delivery
Type, Status
Google Routes JSON/REST distanceMeters, du- dgireet, ground
API ration, travelMode travel time
(DRIVE),  routing-
Preference  (TRAF-

FIC_AWARE)

ERA5 (Wind) NetCDF u, v at 10 m, 1 h (single Flyable matrix
point)

INMET (Rain) CSV Rain  (mm), hourly; Flyable
other variables available

Unit costs CSvV CapEx: Drones, Bat- CapEx,  OpEx,

teries, Safety, Infras- NPV

tructure, Communica-

tion, Regulatory, Soft-

ware, Training; OpEx:

Salaries, Amortization,

Rent, Insurance, Bat-

teries, Maintenance, Li-

censes, Energy

DLV-1 Spec. YAML Mass, rotor, n, price Energy modeling,
CapEx

3.1.1 Brendi order dataset

The project will use an anonymized dump provided by Brendi, stored in CSV, containing
approximately 1048575 records (1,048,575 orders). Access will be formalized via NDA
exclusively for academic purposes, ensuring that all personal data remain protected by

cryptographic hashing.

The dataset has 16 columns, organized as follows:
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e Anonymized identifiers: Hashed Order ID, Hashed Store ID, Hashed Customer
ID;

e Delivery information: Delivery Type, Order Status, Order Total Price, Pay-
ment Method, Platform;

e Temporal location: Date (request timestamp);

e Geographic location: Country, City, State, Lat and Lng (customer coordinates),

Store Lat and Store Lng (restaurant coordinates).

From these fields, spatiotemporal demand patterns will be extracted, the hourly arrival
rate A will be estimated, DSR will be calculated using restaurant and customer coordi-
nates, and the logistical, energetic and financial modules will be fed. The Order Total
Price field will allow revenue estimation, while Delivery Type and Order Status will

assist in filtering valid orders for analysis.

Preprocessing will be conducted in four phases. In the first, duplicates based on
Hashed Order ID will be removed and only orders with Order Status indicating suc-
cessful completion will be filtered. Next, coordinate validation will proceed, excluding
records with null values in Lat, Lng, Store Lat or Store Lng, points outside the urban
perimeter of the analyzed city, or whose total distance (calculated via Haversine between
restaurant and customer) is less than 50 m, in addition, total distance outliers (calculated
via Haversine between restaurant and customer) with value greater than 3 times the stan-
dard deviation will be discarded; this criterion eliminates test orders or geocoding errors.
In the third phase, records will be filtered by Store Lat and Store Lng to isolate the
pilot city chosen in Section 3.2. Finally, a continuous temporal window based on the Date
field that does not include extended holidays or extreme seasonal events will be defined,
according to parameters established in Section 3.2. After these steps, the resulting set

will serve as the central empirical basis for simulations.

3.1.2 Google Routes API

Ground travel distances and times will be obtained through the Google Routes API,
a service that provides optimized routes considering real-time and historical traffic condi-

tions. For each origin—destination pair (restaurant—customer), the API returns:

e distanceMeters: total route distance in meters;
e duration: estimated travel time in seconds;

e polyline: encoded polyline of the route (when necessary).
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Requests are configured with travelMode: "DRIVE" (approximate mode for motorcy-
cle, since the API does not have a specific mode for this vehicle) and routingPreference:
"TRAFFIC_AWARE", which incorporates historical traffic patterns and real-time conditions
when available. For orders with dates in the past, the API uses average historical traffic
patterns, providing realistic estimates even without real-time traffic data from the exact

moment.

Returned data are stored in the processed dataset as Route Distance (km) and Route

Duration (s), and used for:

a) Calculate DSR through comparison between air distance (Haversine) and road dis-
tance returned by the API;

b) Estimate ground travel times for the VRP-D model;

¢) Compare air versus ground mode efficiency.

3.1.3 ERAS5 and INMET climate series

It is intended to characterize meteorological restrictions from two open and comple-
mentary sources. Wind intensity and direction will be extracted from ERAb reanalysis,
obtained for a representative point of the pilot city (coordinates extracted from the cen-
troid of Brendi restaurants), with hourly resolution. The v and v wind components at
10 m height are stored in a NetCDF file with temporal dimensions (one hour) and spatial
(a single point). Precipitation will be obtained from the INMET automatic station closest
to the same point, also with hourly resolution. The INMET CSV file contains multiple

meteorological variables, with the Chuva (mm) column used to determine flight conditions.

From these data, flight scenarios will be defined: conservative, moderate and aggres-
sive. Each scenario will give rise to a binary matrix flyable_day[day, hour|, which will
indicate whether an order can be allocated to the air mode or must migrate to contin-
gency motorcycle delivery. This procedure avoids fixing an arbitrary cutoff value, while

providing sufficient variability for the sensitivity analysis proposed in Section 3.4.

3.1.4 Cost structure

All prices necessary for economic-financial evaluation will be consolidated in a costs.csv
file, structured with columns item, valor_unidade, freq_ano and categoria (CapEx or
OpEx). The file contemplates eight CapEx categories: Drones, Batteries, Safety, In-
frastructure, Communication, Regulatory, Software and Training. OpEx items include:

Salaries and Operation, Amortization, Facility Rent, Insurance, Battery Replacement,
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Maintenance, Operational Licenses and Electricity Consumption. The project plans to
collect these values directly from public sources — for example, the average energy tariff
from ANEEL, salary tables from unions and insurance quotations — always on the cutoff
date immediately prior to simulation. When necessary, amounts will be converted to the

cash flow base year through the accumulated TPCA index.

3.1.5 Drone specification

Instead of fixing the analysis to a specific commercial model, we opt at this stage to de-
fine a reference profile compatible with RBAC-E 94 Class 3 BVLOS (MTOW up to 25kg)
and capable of transporting, at minimum, one kilogram of payload. Definitive technical
parameters — empty mass, battery capacity, rotor disk area, overall powertrain efficiency
and acquisition value — will be filled once the manufacturer is selected, according to

market criteria and leasing availability.

To ensure traceability, it is planned to concentrate these characteristics in a drone_-
spec.yaml file. The file will contain standardized keys, such as mass_empty, battery_-
wh, payload_max, rotor_area, eta_overall and capex. During the simulation phase
(Section 2.2), the Python script will read this YAML directly, allowing replacement of
the reference drone with another model — or even evaluating scenarios with different

hardware generations — without changing the code body.

Therefore, flexibility is maintained to test multiple configurations before converging
to the final specification, while preserving the integrity of energy calculations and Capkx

estimates presented in Chapter 3.4.

3.2 City and analysis period selection

Before starting any simulation, it is necessary to define where and when the experiment
will be executed. The pilot city choice and temporal window will directly influence result
reliability, as it determines the degree of representativeness of the order set, road network
density, climate conditions and data volume to be processed. It is intended, therefore,
to follow a two-stage selection protocol: first spatial criteria linked to Brendi restaurant
coverage are analyzed; then temporal criteria that ensure a stable historical series are

evaluated.
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Spatial coverage criterion

The starting point was to analyze, for each candidate city, the spatial density of orders
present in the Brendi dataset. The analysis considered the number of orders per city and
its area in square meters, calculating order density per square meter. The objective was
to ensure that the selected city presented sufficient order density to provide an adequate
understanding of the real demand situation, allowing routing models to be tested in a
representative context. The city was defined based on the corresponding geographic area,

and those with higher order density per square meter were prioritized in selection.

Temporal stability criterion

Once the study area is defined, the second step consists of electing the reference tempo-
ral window. Due to technical issues of the Brendi platform and strategic and commercial
restrictions of the company itself, it was possible to obtain data only from the three most
recent available months: June, July and August. Given this limitation, the analysis was
initiated based on this reduced temporal window, requiring data annualization to estimate
demand patterns over a complete cycle. From the Date field of the Brendi dataset, daily
order counts were aggregated after date format conversion, allowing characterization of

the hourly arrival rate A and extrapolation of these values to annual estimates.

Integration with subsequent stages

The urban polygon and temporal window chosen in this section will serve as reference
for all modules in Chapter 3: requests to Google Routes API will be filtered for coordi-
nates within the defined spatial limit; the climate matrix (flyable_day) will be generated
exactly for the days and hours in question; and economic-financial projections will inherit
the same period to ensure comparability between scenarios. In this way, methodological
cohesion is ensured and decisions made a posteriori disconnecting from premises estab-

lished in the selection phase are avoided.

3.3 Operational pipeline

With the study area and temporal window definition completed, the next step consists
of transforming raw databases into a coherent set of logistical, energetic and economic
indicators. For this, an integrated processing flow will be established — the operational
pipeline — which develops in nine chained stages. All stages will be implemented in

Python 3.11, using pandas for tabular manipulation, requests for calls to Google Routes
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API and SimPy for event-driven simulation.

In the first stage, each record in the Brendi dataset will use coordinates already present
in fields Store Lat/Store Lng (origin) and Lat/Lng (destination), after validation of null

values and geographic coherence as described in Section 3.1.1, performing data cleaning.

In the second stage, request analysis by city will be constructed and the study city

will be defined based on order concentration identified in the dataset.

In the third stage, the script will calculate two independent distances for each ori-
gin—destination pair: the geodetic air distance, obtained with the Haversine formula ap-
plied to restaurant and customer coordinates, and the shortest road distance obtained
via Google Maps Routes API (according to Section 2.1.2 of Chapter 2), which considers
real-time traffic conditions. The ratio between these two metrics will produce, for each
order, the Distance-Shortening Rate (DSR), an indicator that summarizes the potential

geometric gain of the air mode.

The fourth stage will estimate travel times for both modes. The ground time will be
exactly the value returned by Google Maps Routes API, which already incorporates traffic
conditions and optimized routes. Flight time, in turn, will use the average cruise speed
predicted for the reference drone, also incorporating climb, descent and operational time
phases at the droneport. These values will be stored so they can be replaced, later, by

simulated times in the queue model.

The fifth stage will advance to droneport location. The set of unique restaurants will
be extracted from the Brendi dataset through unique Hashed Store ID, using coordi-
nates Store Lat/Store Lng. This set will be partitioned by K-means, with the number
of clusters defined by the elbow method. In each cluster, the road node with highest
eigenvector centrality — filtered by a vehicle flow interval that avoids already congested
points — will be marked as a droneport candidate. These points will anchor the M/M/c

queue system described in Subsection 2.1.4.

The sixth stage will construct the flyable matrix for days and hours within the re-
quested orders. At this point, it is important to mention that data provided by ERA5
and INMET present temporal lag greater than necessary to obtain data from June to
August of the current year. For this reason, data from June to August of the previous
year (2024) were used to maintain this coherence. Furthermore, three different scenarios
were created — conservative, moderate and aggressive — regarding flight capability. The
conservative scenario was chosen to ensure a more pessimistic scenario regarding the drone

issue.

The seventh stage will consist of classifying each order as Drone, Mized or Motorcycle.
The algorithm will apply hierarchical rules, starting with meteorological conditions —

checking whether the day is flyable or not, derived from the hourly matrix constructed
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in the previous stage. Next, autonomy rules will be applied to verify whether the drone
would be capable of performing the delivery at that distance. Orders with distance greater
than the 5 km operational radius were automatically classified as motorcycle deliveries
(motorcycle mode). Finally, the last analysis will be temporal cost: if motorcycle delivery
time is less than the time needed to take the drone to the droneport, perform the operation
and deliver with the drone, the motorcycle choice will be maintained. Otherwise, mixed

delivery with drone will be chosen.

In the eighth stage, the arrival rate A will be aggregated hour by hour and by day of
week, for each droneport from the Date field of the Brendi dataset, extracting the hour of
each order and associating it to the nearest droneport based on the restaurant’s Hashed
Store ID. Taking the average service time ! calculated in the energy stage, the M/M/c
queue model will size the minimum number of simultaneous drones capable of meeting
the Service Level Agreement of twenty minutes. The M/M/c model is adopted as a long-
term equilibrium approximation, recognizing that SARPAS-NG operational windows and
hourly peaks may introduce non-Poissonian behavior. This sizing will be dynamically

re-evaluated whenever the meteorological scenario excludes flight hours.

The ninth stage will calculate the energy consumption of each air mission through
the segment-by-segment model presented in Section 2.2. Summing consumption in route,
hover and transition phases, battery usage profile and number of charge cycles over an

operational year will be obtained.

Finally, the pipeline will consolidate performance indicators: average delivery time
reduction, motorcycle kilometers avoided, CO, savings and number of orders served by
drone. These indicators will feed the economic-financial module described in Section 3.4,

concluding the cycle of transforming raw data into managerial decision metrics.

With this processing chain, it is expected to capture the most relevant interactions
between demand, infrastructure, climate and costs, allowing holistic evaluation of the

technical and financial viability of the Drone-as-a-Service in the Brazilian urban context.

3.4 Economic—financial model

With the logistical and energetic quantification stage completed, the final viability
evaluation requires transforming these operational results into comparable monetary costs.
The economic—financial model here adopted starts from the premise that, before evalu-
ating investment attractiveness for stakeholders — which would require long-term return
analyses, net present value and risk metrics — it is fundamental to establish whether
the DaaS model can operate with competitive OpEx relative to the ground motorcycle

delivery mode.



CHAPTER 3. MATERIALS AND METHODS 49

The approach consists of calculating the CapEx and OpEx of the drone service and
comparing them directly with the costs of the motorcycle delivery model, establishing an
acceptable OpEx target that allows competing in the current market. This is a critical
prerequisite: if even in a simplified analysis the drone’s OpEx significantly exceeds that
of the motorcycle, there is no point in advancing to investor return analyses, as the
model would not be operationally sustainable. In this section, how capital (CapEx) and
operational (OpEx) costs of the DaaS service will be estimated and how these values will
be compared with equivalents from the motorcycle model to identify initial operational

viability are described.

CapEx and OpEx

The initial investment (CapEx) will contemplate acquisition, installation and licensing
items that have a non-recurring nature. It is expected to include here the physical infras-
tructure of droneports, purchase or leasing contract of aircraft, spare batteries, parachutes,
kill-switch, ANATEL certification and RBAC-E 94 certification. The exact amount will
be extracted from the costs.csv file — described in Section 3.1.4 — respecting values in

effect on the projection base date.

Operational expenditures (OpEx) will encompass electricity, preventive and correc-
tive maintenance, battery replacement, RC-RETA insurance premiums, remote operator
salaries, SARPAS fees and, when applicable, per-flight rental in DaaS modalities. As all
fixed and variable costs will be parameterized by range, the possibility of testing scenarios
with energy inflation or increase in insurance premium without rewriting the model body

will be maintained.

Regulatory integration

Regulatory expenditures identified in Section 2.4 — ANATEL certification fee, certified
parachute acquisition, minimum RC-RETA policy and CAER renewal costs — will be
posted in appropriate columns of CapEx or OpEx, according to their recurring or non-
recurring nature. In this way, cash flow will fully reflect the legal compliance cost, avoiding

underestimating the impact of regulation on profitability.

Reproducibility

All financial calculations are implemented in Python using NumPy and pandas for
numerical operations and tabular manipulation; consolidated results are exported to a

.x1sx spreadsheet made available in the project repository. Furthermore, by versioning
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the code, it is ensured that any reader can reproduce or audit the model by changing only

input values.

With the economic-financial model structured in this way, it is expected to trans-
late the logistical gain into clear capital return metrics, providing an objective basis to

recommend — or discard — adoption of the Drone-as-a-Service in the considered pilot city.

Managerial interpretation

The combination of the two techniques enables construction of operational red lines:
if the minimum tariff accepted by the market falls below the point where the tornado
chart crosses the zero axis, or if the restaurant adoption rate does not reach the indicated

threshold, the investment loses attractiveness.

3.5 Tools and reproducibility

The scientific rigor of this work rests on the possibility of any researcher reproducing —
or auditing — all results. To achieve this objective, routines described in previous sections
will be implemented in a standardized computational environment, balancing portability,

performance and data security.

The project base is a Python 3.11 environment containerized in Docker, built from the
python:3.11-slim image and managed by a requirements.txt file that specifies exact
dependency versions. The environment includes essential tools for data science: pandas
(version > 2.0) and NumPy (version > 1.24) for tabular data manipulation, pyarrow for
efficient processing of large data volumes, requests for HT'TP calls to Google Routes API,
scikit-learn for clustering and classification algorithms, SimPy for discrete event simula-
tion, and matplotlib and seaborn for static visualizations. For geospatial and road network
analysis, OSMnx and NetworkX are used, complemented by contextily and pyproj for inte-
gration with base maps and geographic projections. ERA5 meteorological data processing
is performed through cdsapi, xarray and netcdf4 for access and manipulation of NetCDF
files. The Dockerfile also installs system dependencies necessary for operation of these
geospatial libraries, such as gdal-bin, 1ibgdal-dev and libspatialindex-dev, ensuring

portability and reproducibility of the environment on different platforms.

All code will be organized in Python modules executable via command line, each
accompanied by a config.yaml file that centralizes parameters — for example, wind limits
for the "conservative” scenario. This modular design avoids dependency on interactive

notebooks and facilitates scenario automation by simply swapping configuration files.
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Version control of routines will be maintained in a Git repository, publicly available on
GitHub. Datasets under NDA will be in a private repository, identified by integrity hash.
Large files, such as the road network in GraphML or climate data NetCDF and CSV, will be
tracked by DVC (Data Version Control), allowing code and metadata to remain light while

heavy binaries are stored in a configurable remote backend.

Numerical results — logistical metrics, energy consumption, financial indicators — will
be automatically exported to a .x1sx spreadsheet generated by pandas. Essential graphs
will be created in the same process, ensuring that numbers and figures are always syn-

chronized.

Finally, the repository will have continuous integration via GitHub Actions. Each
push triggers automatic formatting with Black, type checking with mypy and execution
of unit tests on synthetic samples, reducing the probability of introducing last-minute

inconsistencies.

With this infrastructure — reproducible environment, code and data versioning, auto-
mated CI and external parameterization — the study preserves transparency, traceability

and ease of extension for future research.



4 Discussions

This chapter presents a critical and interpretive analysis of the results obtained through
operational simulation and the economic-financial model described in Chapter 3. Here,
the numerical data are contextualized in light of the literature reviewed in Chapter 2, the
practical experiences of commercial operators mentioned in Chapter 1, and the limitations

inherent to the methods employed.

The structure of this chapter is organized into three main axes of discussion. First,
the logistical results are analyzed — including the operational viability of the 20-minute
SLA, the spatial distribution of droneports, fleet sizing, and the proportion of orders eli-
gible for aerial delivery. Next, the economic-financial results are examined — comparing
the operational costs of the DaaS model with traditional motorcycle delivery, evaluating
the impact of regulatory costs, and discussing break-even points and scale viability. Fi-
nally, the validation and limitations of the proposed model are discussed — confronting
the simulated metrics with data from real commercial operators, identifying the main

simplifications assumed and their implications for generalizing the results.

This three-dimensional approach allows not only presenting the numbers obtained, but
also interpreting them critically, identifying points of attention for practical implementa-
tion, and establishing paths for future research that may refine or extend the proposed

model.

4.1 Discussion of Logistical Results

4.1.1 Preprocessing and Data Cleaning

The preprocessing process executed in notebook 01 — data_cleaning_and_filter-
ing.ipynb — constituted the fundamental stage to ensure the quality and representative-
ness of the data that fed all subsequent simulations. This subsection details each stage of
this process, discussing the methodological decisions adopted and their implications for

the final results.
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Stage 1: Initial Exploratory Analysis

The original dataset provided by Brendi contained 1048 575 records distributed across
16 columns. The initial exploratory analysis revealed important characteristics about data
quality. All identification fields (Hashed Order ID, Hashed Store ID, Hashed Customer
ID) were complete, with no null values, ensuring referential integrity of the data. The ge-
ographic coordinate columns (Lat, Lng, Store Lat, and Store Lng) showed 100% com-
pleteness, allowing all records to be used for distance calculations and spatial analysis.
Regarding auxiliary fields, it was identified that 277799 records (26.5%) had null values
in the Country field, while City showed only 367 null values (0.035%) and State 71 null
values (0.007%). These null values did not impact the analysis, as geographic filtering
was performed exclusively by coordinates, as discussed below. The Payment Method field
showed only 13 records (0.001%) with null values, an insignificant percentage that does

not compromise subsequent analyses.

Stage 2: Duplicate Removal and Filtering by Operational Criteria

The first cleaning phase consisted of three sequential checks:

Duplicate check: A duplicate analysis was performed based on the Hashed Order ID
field, unique identifier of each order. The result showed that no duplicate records were
present in the dataset — all 1048575 IDs were unique. This characteristic indicates
excellent initial data quality, probably resulting from a well-structured extraction process

by the Brendi platform.

Filtering by delivery type: All records already had Delivery Type equal to DELIVERY,
which indicates that the provided dataset had already been pre-filtered at the source,

keeping only delivery-type orders. No records needed to be removed at this stage.

Filtering by order status: Similarly, all 1048 575 records already showed Order Sta-
tus equal to DELIVERED, confirming that only successfully completed orders were present

in the dataset. Again, no records were removed.

Implications: The fact that there was no need to remove records in the operational fil-
tering stages demonstrates that the provided dataset was already aligned with the study’s
analysis criteria. This reduced the risk of selection bias and ensured that the analysis
worked with the entirety of available data, maximizing the statistical power of the simu-

lations.
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Stage 3: Challenge of City Name Standardization

An initial analysis of city names revealed a critical problem: the dataset contained
2557 unique city names for only 1048208 records with city information. This ratio —
approximately one different name for every 410 orders — indicated strong standardization

issues in textual fields.

Concrete examples illustrate the problem. The city Sao José dos Campos appeared
in at least 8 distinct variations: “S&o José dos Campos” (20,079 orders) as the standard
form, “Sao José dos Campos” (191 orders) with subtle capitalization variation, “Sao Jose
dos Campos” (179 orders) without accentuation, “Sao José Dos Campos” (32 orders) with
mixed capitalization, “SAO JOSE DOS CAMPOS” (11 orders) entirely in uppercase, “sao
jose dos campos” (6 orders) entirely in lowercase, “Sao jose dos campos” (5 orders) with
inconsistent capitalization, and “Sao Jose dos campos” (1 order) with another variation.
Similar patterns were observed for other cities, such as Jacarei (appearing as “Jacarei”,

“Jacarei”, “JACAREI"), Rio de Janeiro (with variations including “Rio De Janeiro”, “rio
de janeiro”, “RIO DE JANEIRO”) and many others.

Methodological decision: Given this standardization issue, filtering by city name
would be extremely inefficient and error-prone. A text-based approach would require
string normalization (accent removal, lowercase conversion, space handling), manual map-
ping of all known variations, would present risk of losing valid records due to unforeseen

variations, and would complicate maintenance and updates as new data were incorporated.

The adopted solution was to use geographic filtering based on coordinates, specifically
store coordinates (Store Lat and Store Lng). This approach offers decisive advantages:
coordinates are objective and do not suffer from typing variations, allow defining precise
geographic boundaries regardless of administrative boundaries, do not depend on textual
data quality, and the same coordinate intervals can be applied to any future dataset,

ensuring reproducibility.

Stage 4: Geographic Filtering for Sao José dos Campos

The choice of Sao José dos Campos as the pilot city was based on two main criteria:

Order density criterion: Table 4.1 presents the number of orders per city in descend-
ing order, along with populations obtained from IBGE (ESTATISTICA, 2024) and the
respective calculated order densities. Although Sao Paulo, Rio de Janeiro, and Curitiba
showed larger absolute volumes, the density analysis reveals important patterns for pilot

city selection.

It is observed that, although Sao Paulo, Rio de Janeiro, and Curitiba show larger

absolute volumes, Sao José dos Campos has the highest order density (28,28 orders per
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TABLE 4.1 — Number of orders per city, population, and order density (descending order by volume).

City Number of Orders Population Density (orders/1000 hab.)
Séo Paulo 57,814 12,325,232 4,69
Rio de Janeiro 39,592 6,747,815 5,87
Curitiba 37,568 1,963,726 19,16
Sao José dos Campos 21,213 750,000 28,28

Source: Number of orders — Brendi dataset; Population — IBGE (ESTATISTICA, 2024) (2024 esti-
mates); Density — own calculation (number of orders per 1,000 inhabitants).

1,000 inhabitants) and Curitiba (19,16 orders per 1,000 inhabitants). Sao José dos Cam-
pos, with moderate-high density, presents favorable characteristics for routing analysis
and infrastructure sizing, concentrating a significant proportion of orders relative to its

population.

Operational control criterion: The higher density allows greater control over op-
erational variables — distances between restaurants and customers, temporal demand

patterns, and spatial distribution — facilitating validation of the proposed models.

Definition of geographic boundaries: The coordinate intervals were defined as:

Latitude : —23,33667 < Store Lat < —23,15875 (4.1)
Longitude :  — 46,02554 < Store Lng < —45,75697 (4.2)

These values were calibrated to encompass the main urban area of Sao José dos Cam-
pos and adjacent municipalities with significant presence of Brendi restaurants, such as
Jacarei. Figure 4.1 visually illustrates the selected region, delimited by geographic markers

that define the filtering rectangle boundaries.

Filtering result: Application of this geographic filter resulted in maintaining 23 529
orders (2.24% of the original total) and removal of 1025046 orders (97.76% of the orig-
inal total). Quality verification confirmed that the coordinates of filtered records were
within expected intervals: Store Lat ranging from -23,31627 to -23,17250, and Store
Lng ranging from -45,98076 to -45,78449.

Processed Dataset Statistics

The final dataset after all preprocessing presented characteristics indicating good data
quality and representativeness. The total volume comprised 23529 unique and success-
fully delivered orders, distributed among 56 unique stores (distinct Hashed Store ID),
indicating adequate diversity of establishments in the region. The customer base totaled

19599 unique customers (distinct Hashed Customer ID), demonstrating concentration of
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FIGURE 4.1 — Geographic area selected for analysis, delimited by latitude and longitude coordinates.
The region encompasses the main urban area of Sao José dos Campos and adjacent parts, including
municipalities such as Jacarei, where there is significant presence of Brendi restaurants.

-

recurring orders — the customer/order ratio of approximately 0.83 suggests that a signif-
icant portion of customers place multiple orders. The average order value was R$ 66,71,
a value consistent with the food delivery market in Brazil, resulting in a total processed
value of R$1.569.555,31 in the analyzed period. Analysis of city names in the filtered
dataset confirmed the effectiveness of the geographic method: “Sao José dos Campos”
(with variations) concentrated 20,487 orders (87.1%), “Jacaref” (with variations) totaled
3,005 orders (12.8%), while other adjacent cities summed 37 orders (0.1%).

Stage 5: Distance Calculation and Outlier Validation

The processing executed in notebook 02 — 02_data_harversine_distance_anal-
isys.ipynb — implemented validation of geodesic distances and removal of outliers as
foreseen in Section 3.1.1 of Chapter 3. This stage ensured that only orders with realistic

distances were used in subsequent routing and infrastructure sizing analyses.

Haversine distance calculation: For each origin—destination pair (store—customer), the
geodesic aerial distance was calculated using the Haversine formula, as described in the
third stage of the operational pipeline (Section 3.3). The geodesic distance is necessary
to calculate the Distance-Shortening Rate (DSR), a metric that compares the potential

gain of the aerial mode relative to the terrestrial mode.
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Initial statistical analysis: The dataset of 23 529 orders showed minimum distance of
0.000 km, maximum of 462.123 km, mean of 3.060 km, median of 2.537 km, and standard
deviation of 3.838 km.

The distribution showed right skewness, with 99% of orders concentrated below 9.434 km
(99th percentile). The presence of extreme values — such as the maximum distance of
462.123 km — indicated need for additional validation. Figure 4.2 visually illustrates the
concentration of data near zero and the presence of multiple outliers, including an extreme
value near 450 km.

Boxplot da Distribuicao de Distancias
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FIGURE 4.2 — Boxplot of delivery distance distribution before filter application. The concentration of
data near zero and the presence of extreme outliers evidence the need for statistical validation.

Outlier removal by standard deviation: The +3 standard deviation method was ap-
plied, a standard statistical criterion that maintains approximately 99.7% of data in a
normal distribution. The established limits were from 0.00 km to 14.57 km, resulting in
removal of 10 orders (0.04% of total) with distances between 16.321 km and 462.123 km.

These extreme values probably result from geocoding errors or test orders.

Additional minimum distance filter: Complementarily, orders with distance less than
50 m were removed, as foreseen in the methodology. These cases may indicate geolocation
errors, inconsistent data, or in-store pickup orders (not real deliveries). 184 orders (0.78%

of dataset after outlier removal) were removed, with mean distance of 21.32m.

Final result: After applying both filters, the final dataset contains 23335 records
(99.22% of dataset after geographic filtering), showing minimum distance of 0.051 km,
maximum of 14.089 km, mean of 3.048 km, median of 2.560 km, and standard deviation
of 2.224 km.

The reduction of standard deviation from 3.838 km to 2.224 km indicates a more con-
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centrated and realistic distribution for the urban context of Sao José dos Campos. Fig-
ure 4.3 visually compares distributions before and after filter application, evidencing re-
moval of the long tail of extreme values and concentration of data in a more representative

range.
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FIGURE 4.3 — Comparison of distance distributions before and after outlier filter application. The left
histogram shows the original distribution with extreme values up to 400 km, while the right one presents
the filtered distribution concentrated in distances up to 14 km, more representative of the urban context.

The filtered dataset was saved in orders_sao_jose_dos_campos_filtered.csv and
used as the basis for DSR calculation and routing analyses described in subsequent stages

of the operational pipeline.

Stage 6: Road Distance Calculation and DSR

The processing executed in notebook 03 — 03_analysis.ipynb — implemented the
third stage of the operational pipeline (Section 3.3), calculating road distances through
the Google Routes API and computing the Distance-Shortening Rate (DSR) for each

order, as foreseen in the methodology.

Integration with Google Routes API: For each origin—destination pair (store—customer),
requests were made to the Google Routes API configured with travelMode: "DRIVE"
(approximation for motorcycle) and routingPreference: "TRAFFIC_AWARE", as de-
scribed in Section 3.1.2 of Chapter 3. The API returned the optimized road distance
(Route Distance (km)) and estimated travel time (Route Duration (s)), considering

historical traffic patterns for orders with dates in the past.

Parallel processing: Given the need to process 23 335 orders, parallel processing with
10 simultaneous workers was implemented, significantly reducing execution time. The
code was designed to save progress incrementally (every 50 processed orders), allowing
safe interruption and resumption of processing without data loss. At the end, 23 303 orders
were successfully processed (99.9% of total), with only 32 failures due to temporary API

limitations.
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DSR calculation: For each processed order, DSR was calculated according to the

formula presented in Section 2.1.2 of Chapter 2:

d aversine
DSR = ] — —aversine (4.3)

dstreet

where dyaversine 1 the geodesic aerial distance and dggeer is the road distance returned by

the API.

Statistical results: Statistics calculated on the 23 303 processed orders revealed that
road distances showed mean of 4.745 km, median of 3.887 km, ranging from 0.051 km to
22.168 km. Travel times recorded mean of 548s (9.1 min) and median of 512s (8.5 min).
DSR showed mean of 0.3524 (35.24% potential reduction), median of 0.3363, ranging from
-0.2984 to 0.9303. The amplification factor indicates that road distance is, on average,

1.67 times greater than the geodesic aerial distance.

The mean DSR of 0.3524 indicates that, on average, the aerial mode offers potential
reduction of approximately 35% in distance traveled relative to the terrestrial mode, val-
idating the hypothesis of significant geometric gain for urban deliveries. The presence
of negative DSR values (1.3% of cases) indicates situations where road distance was less
than geodesic, possibly due to API inaccuracies or specific characteristics of the local road

network.

Final dataset: Results were consolidated in file orders_sao_jose_dos_campos_-
with_routes.csv, containing columns Route Distance (km), Route Duration (s), and

DSR, ready to feed subsequent modal classification and infrastructure sizing analyses.

Stage 7: Droneport Location via K-means

The processing executed in notebook 04 — 04_analysis.ipynb — implemented the
fifth stage of the operational pipeline (Section 3.3), using the K-means algorithm to de-

termine optimal locations of droneports in the Sao José dos Campos region.

Data preparation: The set of unique restaurants was extracted from the dataset
through aggregation by Hashed Store ID, resulting in 56 distinct restaurants with co-
ordinates Store Lat and Store Lng. The analysis revealed high demand concentration:
while the mean orders per restaurant was 416.7, a single establishment concentrated 6,205

orders (26.6% of total), evidencing significant asymmetry in demand distribution.

Replication approach with jitter: To incorporate demand intensity into the clustering
process, a proportional replication strategy was adopted: each restaurant generated mul-
tiple points corresponding to its order volume, limited to 100 replicas per establishment

for computational optimization. To each replicated point, Gaussian noise (jitter) with
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standard deviation of 0.0005 degrees (approximately 50m) was applied, avoiding exact
overlap and allowing the algorithm to capture spatial variations in demand. This ap-
proach resulted in 2763 geographic points representing the weighted distribution of order

demand.

Determination of optimal number of clusters: The elbow method was applied to
determine the optimal number of droneports, as foreseen in the methodology. Analysis
of inertia J(k) for values of k ranging from 1 to 20 revealed an inflection point (elbow)
between k£ = 3 and k = 4, indicating that the marginal gain in inertia reduction decreases
significantly after & = 4. Figure 4.4 illustrates this analysis, showing the inertia curve
with the elbow point clearly identified at K = 4. Based on this analysis, K = 4 was

chosen as the optimal number of droneports.

Abordagem A: Pontos por Pedido
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FIGURE 4.4 — Elbow method applied to Approach A for determining the optimal number of clusters.
Analysis of inertia J(k) as a function of the number of clusters k reveals an inflection point (elbow)
at K = 4, indicating that adding more clusters beyond this point offers diminishing returns in inertia
reduction.

K-means application: The K-means algorithm was applied to the 2763 replicated
points with K = 4, using 10 random initializations and random_state=42 for repro-
ducibility. The final inertia obtained was 1.52, generating 4 centroids that represent the

geographic locations of the droneports.

Coverage analysis: To validate positioning effectiveness, coverage analysis was per-
formed considering the 5 km range restriction for drone deliveries. For each customer—droneport
pair, the geodesic distance (Haversine) was calculated and customers within the coverage
radius were identified. Results indicated that the 4 positioned droneports can cover 19947
orders out of a total of 23335, representing 85.48% demand coverage. The 3388 uncov-
ered orders (14.52%) are located beyond the 5km radius of any droneport, potentially
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served by traditional motorcycle delivery or requiring additional infrastructure position-
ing. Figure 4.5 illustrates the relationship between the number of droneports and achieved
order coverage, evidencing diminishing returns: while increasing from 3 to 4 droneports
provides significant coverage gain, adding more infrastructure beyond K=4 offers progres-
sively smaller marginal gains, validating the choice of K=4 as the optimal compromise
point between coverage and infrastructure investment. Figure 4.6 visually presents the
final location of the 4 droneports (marked as centroids) distributed in the Sao José dos
Campos region, along with aggregated demand points, evidencing positioning effectiveness

to maximize spatial coverage.
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FIGURE 4.5 — Order coverage as a function of the number of droneports (Approach A). The curve
shows diminishing returns as the number of droneports increases, with significant marginal gains until
K=4, after which adding more infrastructure offers progressively smaller improvements in coverage. The
dashed horizontal line indicates 100% coverage as reference.

Final results: Coordinates of the 4 centroids were saved in centroids_A.csv and
used as the basis for fleet sizing and subsequent analyses of the M/M/c queueing model
described in Subsection 2.1.4. Droneport location was determined exclusively by spa-
tial and demand criteria, as foreseen in the methodology; in a practical implementation,
these points would be refined considering eigenvector centrality in the road network and
availability of adequate infrastructure, as mentioned in the fifth stage of the operational

pipeline.

Stage 8: Construction of Flyable Matrix for Meteorological Conditions

The processing executed in notebook 05 — 05_meteorological_analysis.ipynb —

implemented the sixth stage of the operational pipeline (Section 3.3), constructing binary
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FIGURE 4.6 — Final location of the 4 droneports determined by the K-means algorithm in the Sdo José
dos Campos region. The centroids (marked with red 'X’) represent optimal positions of the droneports,
while colored points represent the distribution of order demand grouped by cluster. The map evidences
the strategic distribution of droneports to maximize demand coverage within the 5km radius.
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flight viability matrices based on historical meteorological conditions, as foreseen in the
methodology (Section 3.1.3).

Reference point definition: The meteorological reference point was established as the
main centroid calculated from the 4 droneports of Approach A, resulting in coordinates
latitude -23,234306 and longitude -45,883495. This choice ensures that analyzed mete-
orological conditions are representative of the droneport operation region. Figure 4.7
illustrates the location of the 4 droneports and the main centroid used as reference point

for meteorological data collection.

9 Centroide Principal (S&o José dos Campos):
Latitude: -23.234306
Longitude: —45.883495
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FIGURE 4.7 — Location of the 4 droneports (marked with red 'X’) and the main centroid (marked with
blue star) used as reference point for meteorological data collection in the Sdo José dos Campos region.

Temporal data adjustment: The period of available orders comprises June to Au-
gust 2025; however, meteorological data (ERA5 and INMET) present temporal lag that
prevents access to future data. As foreseen in the methodology, an equivalent histori-
cal period was adopted — June to August 2024 — maintaining seasonal coherence and

allowing analysis with real meteorological data.

ERAS5 data acquisition and processing: Wind data were obtained from ERA5 reanal-
ysis of the Copernicus Climate Data Store, consisting of v and v wind components at 10 m
height with hourly resolution. NetCDF files were processed to extract wind speed and
direction at the reference point through spatial interpolation. 2183 hourly records were
processed for the three-month period, showing mean wind speed of 6.79 km/h, median of
6.65 km/h, and maximum of 21.77 km /h.

INMET data acquisition and processing: Wind and rain data were obtained from
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INMET Taubaté station, 42.8 km from the urban centroid of Sao José dos Campos, as
it is the nearest station with continuous hourly records. Due to INMET API limitations
for historical data, precipitation data were obtained through manual file export from
the institutional website (rain_data_real.csv). 1288 hourly records were processed,
revealing that most hours (median and 75th percentile equal to zero) showed absence
of precipitation, with maximum value of 3.8 mm/h and arithmetic mean of 0.012 mm /h.
Figure 4.8 presents examples of meteorological data (wind and precipitation) for the first 7
days of analysis, illustrating condition variability and predominance of wind speeds below

operational limits.
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FIGURE 4.8 — Meteorological data (wind speed and direction, and precipitation) for the first 7 days of
analysis (June 2024). Data illustrate favorable conditions for operation, with wind speeds consistently
below the 25 km/h limit and absence of significant precipitation in the period.

Flight scenario definition: Three scenarios were defined as foreseen in the methodol-
ogy, each establishing distinct limits for wind speed and precipitation. The conservative
scenario establishes maximum wind of 15km/h and maximum precipitation of 0 mm/h,
representing very restrictive conditions for pessimistic analysis. The moderate scenario es-
tablishes maximum wind of 20 km/h and maximum precipitation of 1 mm/h, representing
intermediate conditions. The aggressive scenario establishes maximum wind of 25km/h
and maximum precipitation of 2.5 mm/h, corresponding to the maximum limit configured

in the system.

Limits were based on commercial drone specifications, scientific literature on un-

manned aerial operations, and civil aviation regulations (ANAC, FAA, EASA), consid-
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ering stabilization capacity, energy consumption, drift risks, and protection of electronic

components.

Flyable matrix construction: For each scenario, a binary matrix flyable_day|day,
hour| was constructed where each entry indicates flight viability (1=viable, 0=not viable)
based on simultaneous verification of both meteorological criteria. Results indicated high
operational availability even in the most restrictive scenario, as detailed in Table 4.2. The
high flyability rate (97.7%) results from typically favorable climatic conditions in the Sao
José dos Campos region, and not from permissive parameters. Figures 4.9, 4.10, and 4.11
visually illustrate flight viability matrices for each scenario, showing temporal distribution

of operational conditions.

TABLE 4.2 — Comparison of flight viability between meteorological scenarios.

Scenario Total Hours Viable Hours Non-Viable Hours % Viable
Conservative 2197 2146 51 97,68%
Moderate 2197 2192 5 99,77%
Aggressive 2197 2196 1 99,95%
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FIGURE 4.9 — Flight viability matrix (flyable) for the conservative scenario, showing the first 30 days of
analysis. Each cell represents a specific hour of a day, with dark green indicating viable flight (1) and red
indicating restriction (0). The conservative scenario presents restriction periods concentrated mainly at
the end of June, especially in afternoon hours.
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FIGURE 4.10 — Flight viability matrix (flyable) for the moderate scenario, showing the first 30 days of
analysis. Compared to the conservative scenario, it presents almost continuous availability, with only
some isolated restriction periods.

Analysis of restriction reasons revealed that wind speed was the predominant limiting
factor — in the conservative scenario, 51 hours were non-viable, most of which resulted

from winds above 15km/h. Precipitation had minimal impact, being responsible for only
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FIGURE 4.11 - Flight viability matrix (flyable) for the aggressive scenario, showing the first 30 days of
analysis. It presents almost total availability, with only a minimal restriction period at the beginning of
the first day.

a small fraction of restrictions, consistent with the analyzed period (winter in the south-
east region, characterized by lower precipitation). Figure 4.12 details specific restriction
reasons for each scenario, evidencing wind predominance in the conservative scenario and

progressive reduction of restrictions in less restrictive scenarios.
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FIGURE 4.12 — Flight restriction reasons by meteorological scenario, detailing contribution of wind, pre-
cipitation, or both. The conservative scenario presents the highest number of restrictions, predominantly
due to wind speeds above the limit, while moderate and aggressive scenarios present reduced number of
restrictions.

Conservative scenario choice: As mentioned in the methodology, the conservative sce-
nario was chosen for subsequent analyses, ensuring a pessimistic approach that increases

result robustness and provides additional safety margin for practical operations.

Generated files: The three matrices were saved in flyable_matrix_conservador.csv,
flyable_matrix_moderado.csv, and flyable_matrix_agressivo.csv, each contain-
ing columns datetime, date, hour, wind_speed_kmh, precipitation_mm, and flyable.

These matrices feed the seventh stage of the operational pipeline, where each order is
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classified as Drone, Mixed, or Motorcycle after verification of meteorological conditions at

the time of request.

Stage 9: Centroid Analysis and Restaurant Association to Droneports

The processing executed in notebook 06 — 06_centroids_analysis.ipynb — imple-
mented strategic association of restaurants to droneports and calculation of operational
distances necessary for modal classification and fleet sizing, connecting results from pre-

vious stages of the operational pipeline.

Centroid loading and validation: The notebook started with loading the 4 chosen
centroids from Approach A, saved in centroids_choosen.csv. Droneport coordinates
were validated: Droneport 1 located at latitude -23,240856 and longitude -45,896882;
Droneport 2 at latitude -23,206760 and longitude -45,859530; Droneport 3 at latitude -
23,183598 and longitude -45,805135; and Droneport 4 at latitude -23,301550 and longitude
-45,967545.

Statistical analysis of coordinates revealed a spatial distribution representative of the
urban region of Sao José dos Campos, with standard deviation of 0,051283 degrees in
latitude and 0,068196 degrees in longitude, indicating adequate dispersion for demand

coverage.

Droneport distance analysis: To evaluate infrastructure, the geodesic distance matrix
between all droneport pairs was calculated using the Haversine formula. Results indicated
minimum distance of 5.38 km between Droneport 1 and Droneport 2, maximum distance
of 21.15km between Droneport 3 and Droneport 4, mean distance of 11.52 km, median of
10.61 km, and standard deviation of 5.42 km.

The minimum distance of 5.38 km ensures that droneports are not excessively close,
avoiding overlap of influence zones, while the maximum distance of 21.15km indicates
adequate dispersion for broad regional coverage. Table 4.3 presents the complete distance

matrix between droneports.

TABLE 4.3 — Matrix of geodesic distances between droneports (in kilometers).

Droneport 1 Droneport 2 Droneport 3 Droneport 4

Droneport 1 0,00 9,38 11,33 9,88
Droneport 2 5,38 0,00 6,13 15,26
Droneport 3 11,33 6,13 0,00 21,15
Droneport 4 9,88 15,26 21,15 0,00

Restaurant association to droneports: A critical stage was determination of the influ-

ence zone of each droneport, associating each restaurant to the nearest droneport. Unlike
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the simple geometric approach (Haversine distance), the Google Routes API was used
to calculate real road distances between restaurants and droneports, providing a more ac-
curate representation of time and terrestrial transport distance necessary to bring orders

from restaurants to droneports.

The process involved extraction of 56 unique restaurants from the order dataset, iden-
tified by Hashed Store ID; calculation of road distance and travel time for each restau-
rant—droneport pair (totaling 224 API requests); identification of the nearest droneport
for each restaurant based on shortest road distance; and parallel processing with 10 si-

multaneous workers to optimize execution time.

Association results: Distribution of restaurants by droneport revealed significant
asymmetry: Droneport 1 was associated with 22 restaurants (39,3% of total), Droneport
2 with 13 restaurants (23,2% of total), Droneport 3 with 10 restaurants (17,9% of total),
and Droneport 4 with 11 restaurants (19,6% of total).

Road distance statistics between restaurants and their associated droneports showed
minimum distance of 0.42km, maximum of 11.87km, mean of 4.23km, and standard
deviation of 2.65 km.

The mean distance of 4.23 km indicates that, on average, restaurants are positioned
at a moderate road distance from droneports, facilitating initial terrestrial transport of
orders to takeoff points. Figure 4.13 visually illustrates influence zones, showing restau-
rants colored according to their associated droneport and evidencing spatial distribution
of coverage zones. The visualization confirms that each droneport has a well-defined influ-
ence area, with concentration of restaurants nearby and distribution that reflects demand

density in the Sao José dos Campos and Jacarei region.

Droneport—customer distance calculation: After restaurant association to droneports,
geodesic distance (Haversine) between each droneport and the corresponding customer
delivery address was calculated. This metric is fundamental to determine viability of

direct drone deliveries, verifying if distance is within the 5km operational radius.

For the 23 335 processed orders, statistics of droneport—customer distances were: mini-
mum distance of 0.029 km, maximum of 14.332 km, mean of 3.515 km, median of 3.093 km,
and standard deviation of 2.162 km.

Analysis by droneport revealed distribution variations: Droneport 1 concentrated
12630 orders (54,1%) with mean distance of 3.563 km; Droneport 2 totaled 6708 or-
ders (28,7%) with mean distance of 3.883km; Droneport 3 served 1647 orders (7,1%)
with mean distance of 2.517 km; and Droneport 4 served 2350 orders (10,1%) with mean
distance of 2.912 km.

Demand concentration at Droneport 1 (more than half of orders) reflects presence
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FIGURE 4.13 — Influence zones of droneports in the Sdo José dos Campos region. Markers with ’X’
represent the 4 droneports (DP1 in red, DP2 in blue, DP3 in green, DP4 in yellow), while colored squares
represent restaurants associated with each droneport according to shortest road distance calculated by
Google Routes API. Spatial distribution evidences natural partition of the region into coverage zones
based on real road proximity, allowing logistical optimization of terrestrial transport to takeoff points.
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of high-volume restaurants in this region, while Droneport 3 shows the shortest mean
distance to customers (2.517 km), indicating potential operational efficiency for fast de-

liveries.

Integration with flyable matrix: The notebook concluded with integration of the me-
teorological viability matrix (flyable_matrix_conservador.csv) to orders, associating
each order to flight status (flyable) corresponding to its request date and time. The
join was performed through a composite key of date and hour, adjusting year from 2024

(meteorological data period) to 2025 (order period) to maintain temporal coherence.

Results indicated high operational availability: 23290 out of 23335 orders (99,8%)
had flight status found; among these, 22 765 (97,7%) were classified as viable (flyable =
true), while 525 (2,3%) were classified as restricted (flyable = false).

The 97,7% rate of orders in viable meteorological conditions validates the conserva-
tive scenario choice and demonstrates that most orders could be served by drone from a

climatic perspective, disregarding other operational restrictions (autonomy, time, cost).

Generated files: Processing generated three main files: restaurants_droneport_-
assignment.csv, containing restaurant—droneport association table with road distances
and transport times; orders_with_complete_routes.csv, containing complete order
dataset with associated droneport information, geodesic distances, and meteorological
status; and distances_between_droneports.csv, containing distance matrix between

droneports for infrastructure analyses.

These files provide the consolidated database necessary for subsequent stages of the
operational pipeline, including modal order classification (stage 7) and fleet sizing via

M/M/c model (stage 8), as described in following sections of this chapter.

Stage 10: Modal Order Classification — Comparison between Delivery Modes

The processing executed in notebook 07 — 07_delivery_mode_comparison.ipynb —
implemented the seventh stage of the operational pipeline (Section 3.3), performing modal
classification of each order through systematic comparison between two distinct delivery
modes. This stage is fundamental to determine the optimal logistical strategy for each

order, balancing delivery time, operational viability, and technical restrictions.

Context and objective: Given strategically positioned droneport infrastructure and
validated meteorological conditions, each order can be served by one of two operational
strategies. The first strategy consists of 100% motorcycle delivery, involving direct trans-
port from restaurant to customer using traditional motorcycle delivery, utilizing the op-
timized road route calculated by Google Routes API. The second strategy consists of

mixed delivery, involving terrestrial transport from restaurant to the nearest droneport
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(via motorcycle), followed by takeoff, drone flight to customer, and final delivery.

The choice between these strategies must minimize total delivery time, respecting

operational and technical restrictions.

Decision model and methodological simplifications: This stage represents a critical
and sensitive moment of the simulation, where the decision on delivery mode is made
for each order. The problem can be visualized through a triangular diagram formed by
three vertices: the droneport, the restaurant, and the customer. From this geometric con-
figuration, the optimal logistical strategy must be determined. Figure 4.14 conceptually
illustrates the two possible delivery modes: direct mode (restaurant — customer via mo-
toboy) and mixed mode (restaurant — droneport via motoboy, followed by droneport —

customer via drone).

d_rest-droneport

d_droneport-
consumer

d_rest-consumer

FIGURE 4.14 — Conceptual triangular diagram of delivery modes. The diagram illustrates the two
possible operational strategies for an order: (1) direct mode, where the motoboy transports the order
directly from restaurant to customer, covering distance dyest-consumer; (2) mixed mode, where the motoboy
transports the order from restaurant to droneport (distance dyest-droneport), and then the drone completes
delivery from droneport to customer (distance daroneport-consumer). The decision between modes depends
on comparison of total times of each strategy, considering meteorological and operational range restric-
tions.

Obvious decision cases are those where technical restrictions prevent use of mixed
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mode. When meteorological conditions are not viable (flyable = false), flight is im-
possible and choice automatically falls on motorcycle. When distance between droneport
and customer exceeds the 5km operational limit, the drone does not have sufficient range

and again motorcycle is the only viable option.

The complex case occurs when both strategies are technically viable: at this moment,
decision requires time comparison, considering multiple operational variables that could

impact choice in a real scenario.

Assumed simplifications: To enable analysis and make the model computationally

tractable, important methodological simplifications were assumed that need to be explicit.

The first simplification refers to independence between orders: each order is treated as
an independent entity, without temporal or spatial relation with subsequent or previous
orders. In a real operation, there would be a sequence of orders arriving over time, creating
operational dependencies (for example, a drone busy with a previous order would not be
available for an immediate new order). This simplification allows treating each order in

isolation, but does not capture the real temporal dynamics of the operation.

The second simplification refers to instant resource availability: it is assumed that both
drone and motoboy are always available at the moment of order request. In practice, both
resources may be busy serving other orders, and availability would be a stochastic variable
dependent on the current system state. This simplification eliminates capacity restrictions

that could alter modal decision in high-demand scenarios.

The third simplification refers to unit capacity of the motoboy: it is assumed that each
motoboy can transport only one order at a time, both for direct deliveries to customer and
for transports to droneport. In reality, especially in the case of transport to droneport,
a motoboy could optimize its route collecting multiple orders from nearby restaurants
and delivering them simultaneously to the droneport, which would then distribute to fi-
nal customers via drones. This consolidation strategy could significantly reduce terrestrial
transport times and make mixed mode more competitive. The adopted simplification rep-
resents a pessimistic scenario, where there is no order consolidation, simplifying analysis

but potentially underestimating mixed mode efficiency.

These simplifications are intentional and conservative: by assuming less favorable con-
ditions for mixed mode (no consolidation, no complex temporal dependencies), obtained
results can be interpreted as a lower estimate of the hybrid system’s operational potential.
In a practical implementation, with route optimization, order consolidation, and dynamic
resource management, mixed mode could present superior performance to that observed

in this analysis.

Operational parameters: Time calculations for mixed mode were based on technical

parameters established according to commercial drone specifications and scientific liter-
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ature. Drone cruise speed was defined at 36 km/h (10m/s), typical operation speed in
urban environment for small delivery drones. Droneport operation time was established
at 120s (2min), including landing time, cargo transfer, safety verification, and takeoff.
Maximum droneport—customer distance was defined at 5km, operational range limit of

the drone considered in spatial viability analysis.

Comparison methodology: Modal classification was performed through a sequential

decision algorithm applied to each order, according to the following rules:

Rule 1 — Meteorological verification: If field flyable equals 0 (non-viable mete-
orological conditions), the order is automatically classified as motorcycle, regardless of
other considerations. This restriction is imposed by operational safety and regulatory

compliance.

Rule 2 — Range verification: If geodesic distance between associated droneport and
customer is greater than 5km, the order is classified as motorcycle, as it is beyond the

drone’s operational range.

Rule 3 — Time comparison: For orders that passed the first two verifications, the
decision criterion is simple and direct: calculate both delivery times and choose the mode

that presents shorter total time.

Motorcycle time corresponds to Route Duration (s) already calculated by Google

Routes API, representing direct road travel time from restaurant to customer.

Mixed mode time is calculated through the formula:

dq

o roneport_customer

tmixed - tmoto,droneport + toperation + (44)
Ucruise

where tioto droneport 1S terrestrial transport time from restaurant to droneport (obtained
from time_to_droneport_s), toperation = 120's is operation time at droneport, daroneport_customer
is geodesic distance between droneport and customer, and vepyise = 36 km/h is drone cruise

speed.

The chosen mode is the one that presents shorter total delivery time. This direct
time comparison is possible thanks to assumed methodological simplifications (instant
resource availability, independence between orders), which allow treating each order as a

static optimization problem.

General classification results: Application of the classification algorithm to the 23 335

processed orders resulted in the following distribution:
Analysis of decision reasons reveals limiting factors for mixed mode adoption:

Predominance of motorcycle mode (88,78% of orders) indicates that, for most cases

in the analyzed region, direct delivery via motorcycle presents shorter time than mixed
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TABLE 4.4 — Distribution of chosen delivery modes and respective decision reasons.

Chosen Mode Number of Orders Percentage

Motorcycle 20717 88,78%
Mixed 2618 11,22%
Total 23335 100,00%

TABLE 4.5 — Distribution of orders by decision reason in modal classification.

Decision Reason Number of Orders Percentage
Motorcycle time shorter 17191 73,67%
Maximum distance exceeded 2956 12,67%
Mixed time shorter 2618 11,22%
Non-viable meteorological conditions 570 2,44%
Total 23335 100,00%

strategy, even when this is viable from meteorological and range perspectives. Figure 4.15
visually illustrates distribution of chosen modes, decision reasons, comparison of delivery

times, and distribution of time savings obtained.

Delivery time analysis: Statistical comparison of delivery times by mode reveals im-

portant characteristics of operational efficiency.

For orders classified as motorcycle, mean time is 525.72s (8.76 min), median time is
480.00s (8.00 min), and range varies from a few minutes for nearby deliveries to approxi-

mately 20 min for more distant routes.

For orders classified as mized, mean time is 693.95s (11.57 min) and median time is
711.89s (11.86 min).

Observation that mean time of mixed mode (when chosen) is superior to mean time of
motorcycle mode may seem contradictory; however, this global metric does not capture
the individual comparison performed by the algorithm. Mixed mode was chosen only
when it presented shorter time than motorcycle for that specific order, but its absolute

times tend to be greater due to overhead of transport to droneport and operation.

Detailed analysis of mixed orders: To adequately understand the operational gain of
mixed mode, it is necessary to analyze specifically the 2618 orders where this strategy
was chosen. In these cases, comparing time that would be spent by pure motorcycle
versus effective time of mixed mode, pure motorcycle time (hypothetical) shows mean of
777.95s (12.97min) and median of 775.50s (12.93 min); mixed time (real) shows mean
of 690.565s (11.51 min) and median of 708.66s (11.81 min); time savings shows mean of
87.39s (1.46 min) and median of 63.13s (1.05min); and percentage savings shows mean
of 11,41% and median of 8,24%.
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FIGURE 4.15 — Comparative analysis of delivery modes: (a) distribution of chosen modes, showing
predominance of motorcycle mode (88,78%); (b) distribution by decision reason, evidencing that shorter
motorcycle time is the main factor; (¢) comparison of delivery time distributions through boxplots,
indicating that motorcycle mode presents shorter median times; (d) time savings distribution, showing
that when mixed mode is chosen, there is positive savings relative to motorcycle mode.
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Percentile analysis of time savings reveals an asymmetric distribution: 10th percentile
of 10.25s (0.17 min) with minimum savings of 1,49%, 25th percentile of 26.97 s (0.45 min)
with savings of 3,77%, 50th percentile (median) of 63.13 s (1.05 min) with savings of 8,24%,
75th percentile of 118.42s (1.97 min) with savings of 14,73%, 90th percentile of 219.42s
(3.66 min) with savings of 26,34%, 95th percentile of 260.90s (4.35min) with savings of
39,22%, and 99th percentile of 329.20s (5.49 min) with savings of 46,84%.

These results demonstrate that, when mixed mode is selected, it offers consistent time
gains, with half of orders showing savings superior to 1min and 25% of cases showing
savings superior to approximately 2min. Figure 4.16 presents detailed analysis of or-
ders classified as mixed, comparing time that would be spent by pure motorcycle versus

effective time of chosen mixed mode, visually evidencing time savings obtained.

Comparagao; Tempo Moto vs Tempo Misto
{Cor = Economia de tempa) Distribuicao da Economia Percentual de Tempo

== unhs de guakdade (v eworomial r l — ! == Medls 11.92%
s _ Pecans: B, 34

mido {minutas)
rminukos)
M1

Cromnomis

53

o
o Pl
byt C'h)

5 13 15 FL) | 10
Tempo Molo Pura (Mifutos) Econtaia Percentual (3]

armpa Misto Escs

”Iu.ill_“

FIGURE 4.16 — Detailed analysis of orders with mixed delivery: (a) time comparison through scatter plot,
where each point represents an order and color indicates time savings obtained; points below equality
line indicate positive savings of mixed mode; (b) percentage time savings distribution, showing that most
orders present savings between 5% and 15%, with mean of 11,41% and median of 8,24%. Distribution is
right-skewed, indicating that some orders present significantly larger percentage savings.

Distance analysis: Distribution of chosen modes as a function of distance between

droneport and customer reveals important patterns about operational viability:

TABLE 4.6 — Distribution of delivery modes by droneport—customer distance range.

Distance Range Mixed Motorcycle Total % Mixed

0-2 km 612 6023 6635 9,22%
2-4 km 1332 6660 7992 16,67%
4-6 km 674 5010 5684 11,86%
6-10 km 0 2792 2792 0,00%
>10 km 0 232 232 0,00%

Total 2618 20717 23335 11,22%
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It is observed that the 2-4 km distance range presents the highest proportion of or-
ders served by mixed mode (16,67%), indicating that this is the zone of highest relative
efficiency for the aerial mode. For very short distances (0-2 km), overhead of transport
to droneport and operation makes mixed mode less competitive. For distances between
4-6 km, still within operational range, proportion of mixed mode decreases, possibly due
to increased flight time that compensates less the gain relative to road routes. Figure 4.17
visually illustrates this percentage distribution by distance range, clearly evidencing that

mixed mode is used exclusively for distances within the 5km operational radius.

Distribuicao de Modos por Distancia Droneport-Cliente
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FIGURE 4.17 — Percentage distribution of delivery modes by distance range between droneport and
customer. The stacked bar chart shows that mixed mode (in turquoise blue) presents highest proportion
in the 24 km range (16,67%), decreasing for smaller distances (9,22% in 0-2 km) and larger distances
(11,86% in 4-6 km). For distances superior to 6 km, mixed mode is not used due to operational range
restriction, with 100% of orders served by motorcycle.

Analysis of road distances (Route Distance) by chosen mode reveals that mixed or-
ders show mean Route Distance of 5.12 km and median of 4.87 km, while motorcycle orders

show mean Route Distance of 4.74 km and median of 3.92 km.

Interestingly, orders classified as mixed show slightly larger road distances on average,
which suggests that mixed mode is especially advantageous when the direct road route is

longer or presents unfavorable traffic conditions.

Geographic distribution of orders by delivery mode, presented in Figure 4.18, reveals
important spatial patterns about hybrid system operation. It is observed that orders
served by mixed mode (in cyan) concentrate in well-defined clusters near droneports,
while orders served by motorcycle (in red) show much broader and denser distribution
throughout the region. This geographic visualization confirms that mixed mode operates
essentially within droneport coverage radius, while motorcycle mode serves both covered

and uncovered areas by aerial infrastructure.

Interpretation and operational implications: Modal classification analysis reveals that

only 11,22% of orders are optimized through mixed mode, while 88,78% are served via
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FIGURE 4.18 — Geographic distribution of orders by delivery mode in the Sao José dos Campos region:
(a) general view showing all orders (red = motorcycle, cyan = mixed, yellow stars = droneports); (b) areas
served exclusively by mixed delivery (2,618 orders), evidencing concentrated clusters near droneports; (c)
areas served by motorcycle (20,717 orders), showing much broader coverage; (d) overlaid comparison
with transparency indicating density, evidencing that motorcycle has dominant spatial distribution while
mixed mode operates in specific zones.
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traditional motorcycle. This result reflects various operational realities.

Regarding meteorological restrictions, approximately 2,4% of orders are excluded from
mixed mode due to non-viable climatic conditions, validating the importance of meteoro-

logical analysis performed in Stage 8.

Regarding range restrictions, about 12,7% of orders are beyond the 5km operational
radius of droneports, being automatically directed to motorcycle. Orders with distance su-
perior to the 5 km operational radius were automatically classified as motorcycle deliveries
(motorcycle mode). This limitation could be mitigated through additional infrastructure

positioning or expansion of drone operational range.

Regarding relative efficiency of terrestrial mode, for 73,7% of orders viable from mete-
orological and range perspectives, direct delivery via motorcycle still presents shorter time
than mixed mode. This occurs because overhead of transport to droneport and operation
time (2min) frequently exceeds the gain provided by direct flight, especially for already

optimized road routes.

Regarding optimization potential, orders where mixed mode was chosen concentrate
at intermediate distances (2-6 km from droneport), where geometric gain of direct flight
compensates operational overhead. Mean savings of 1.46 min in these cases demonstrates

operational value, especially in contexts of rigid SLA.

Implications for sizing: The proportion of 11,22% of orders eligible for mixed mode
is a critical input for drone fleet sizing, as described in the M/M/c queueing analysis of
pipeline stage 8. This rate indicates that demand for drone services is substantial but not
dominant, requiring a hybrid operation model where most orders continue to be served

by traditional motorcycle delivery.

Generated files: Processing generated file orders_delivery_mode_comparison.csv,
containing for each order the chosen mode (modo_escolhido: motorcycle or mix), deci-
sion reason (motivo_decisao), calculated times for both modes (tempo_moto_s, tempo_-
misto_s), and all information necessary for subsequent fleet sizing and economic evalua-

tion analyses.

This dataset consolidates modal classification and serves as the basis for infrastructure
sizing and economic-financial evaluation analyses described in following sections of this

chapter.

Exploratory Analysis: Alternative Droneport Positioning Based on Demand

As part of exploratory analysis of notebook 07, an additional investigation was per-
formed on alternative droneport positioning strategies aiming to increase penetration of

deliveries via mixed mode. Analysis revealed that order distribution among restaurants is
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highly asymmetric: while mean orders per restaurant is approximately 416,7, some estab-
lishments concentrate substantially larger volumes. Figure 4.19 illustrates this asymmetry
through order volume of the 20 restaurants with highest demand, evidencing that the top

6 restaurants concentrate a disproportionately high proportion of total orders.

Top 20 Restaurantes por Volume de Pedidos
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FIGURE 4.19 — Order volume distribution among the 20 restaurants with highest demand. The chart
evidences high concentration of orders in top restaurants: the leading restaurant concentrates 6,205
orders, while following ones show significantly smaller volumes. The top 6 restaurants concentrate a
substantial proportion of total demand, justifying droneport positioning strategies based on demand
instead of uniform spatial distribution.

High-volume restaurant identification: Analysis of order distribution by restaurant
identified that approximately 6 restaurants concentrate a significant proportion of total
demand. This concentration suggests that positioning droneports directly at these high-
volume restaurants could eliminate overhead of terrestrial transport to droneport, making

mixed mode more competitive for these specific establishments.

Figure 4.20 presents geographic distribution of restaurants coded by order volume,
revealing spatial location of demand centers and visually illustrating observed concentra-
tion. This visualization demonstrates that the mean does not necessarily represent the
best practical solution: while centroids calculated via K-means position droneports at
locations that optimize mean spatial distribution, high-volume restaurants may be dis-
placed from these centroids, resulting in significant terrestrial transport times that reduce
mixed mode competitiveness. Positioning droneports directly at highest-volume restau-

rants better captures the operational reality of concentrated demand.

Alternative analysis methodology: A demand-based positioning strategy was imple-
mented, where droneports are positioned directly at restaurants with highest order vol-

ume, instead of using centroids calculated by K-means algorithm. The main advantage
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FIGURE 4.20 — Geographic distribution of restaurants coded by order volume. Size and color of circles
indicate order volume of each restaurant, varying from light yellow (low volume) to dark red (high volume).
Droneports positioned via K-means are marked with cyan stars. Visualization evidences that highest-
volume restaurants (large red circles) do not necessarily coincide with calculated centroids, demonstrating
that strategies based on spatial mean may not adequately capture real demand concentration.
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of this approach is that, when the droneport is located at the restaurant itself, terrestrial
transport time from restaurant to droneport (tmoto droneport) becomes zero, eliminating this

component from mixed time calculation.

For a restaurant with its own droneport, the mixed time formula simplifies to:

ddr

. oneport_customer

tmixed - toperation + (45)
Ucruise

where toperation = 120s (2 minutes) and terrestrial transport time to droneport is elimi-

nated.

Analyzed scenarios: Three alternative scenarios were evaluated, positioning droneports
at top 4, top 5, and top 6 restaurants with highest order volume in the analyzed period.
Each configuration was compared with the base configuration (4 droneports positioned

via K-means) using the same modal classification algorithm described previously.

Exploratory analysis results: Alternative analysis results revealed significant gains in

mixed mode penetration:

TABLE 4.7 — Comparison between droneport positioning configurations.

Configuration Mixed Orders Motorcycle Orders % Mixed
Current (4 K-Means) 2618 20717 11,22%
Alternative (4 Demand) 9351 13984 40,07%
Alternative (5 Demand) 10790 12545 46,24%
Alternative (6 Demand) 12501 10834 53,57%
Total 23335 23335 —

Results demonstrate that demand-based strategy offers substantial gains. Configu-
ration with 4 demand-based droneports showed increase of 28,85 percentage points in
mixed mode penetration (from 11,22% to 40,07%), representing 6733 additional orders
served via mixed mode. Configuration with 5 demand-based droneports showed increase
of 35,02 percentage points (to 46,24%), with 8172 additional orders. Configuration with
6 demand-based droneports showed increase of 42,35 percentage points (to 53,57%), with
9883 additional orders.

Figure 4.21 presents geographic distribution of orders by delivery mode for configura-
tion with 4 droneports positioned at top 4 restaurants with highest order volume. This
configuration, which will be adopted as the basis for subsequent analyses of this work,
demonstrates substantial increase in mixed mode penetration (40,07%) relative to original
K-means configuration (11,22%), while maintaining a manageable number of droneports

for operational and economic analyses.

Result interpretation: Significant gain observed in demand-based configurations can
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FIGURE 4.21 — Geographic distribution of orders by delivery mode for configuration with 4 droneports
positioned at top 4 restaurants with highest order volume: (a) areas served by mixed delivery (9,351
orders), showing concentration near droneports; (b) areas served by motorcycle (13,984 orders), with
broader distribution; (c) overlaid geographic comparison, evidencing that mixed mode operates mainly
within droneport coverage radius; (d) order distribution by droneport, showing that each droneport serves
both orders from the restaurant where it is located and from nearby restaurants in the region. This
configuration presents 40,07% mixed mode penetration and will be used as the basis for subsequent

analyses.
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be attributed mainly to elimination of terrestrial transport overhead to droneport for
high-volume restaurants. When the droneport is located at the restaurant itself, mixed
time reduces essentially to operation time (2min) plus flight time to customer, making
this strategy competitive even for smaller distances that would not be viable in K-means

configuration.

Additionally, droneports positioned at high-volume restaurants continue to serve orders
from nearby restaurants in the region, maintaining operational flexibility and potentially

increasing overall system efficiency.

Stage 11: Drone Fleet Sizing via M/M/c Model

The processing executed in notebook 08 — 08_analysis_top4_restaurants.ipynb
— implemented the eighth stage of the operational pipeline (Section 3.3), performing
sizing of drone fleet necessary to meet the 20-minute SLA through the M/M /¢ queueing
model. This stage is fundamental to determine operational capacity of each droneport, en-
suring that the system can meet expected demand without compromising agreed delivery

times.

Context and data preparation: Sizing was performed using the configuration chosen
in previous exploratory analysis: 4 droneports positioned at top 4 restaurants with high-
est order volume. Only orders classified as mized (9,351 orders, 40,07% of total) were
considered for sizing, as these are the ones that arrive at the droneport queue to be served
by drones. Orders classified as motorcycle are served directly via terrestrial transport and

do not require drone resources.

Operational parameters of sizing: Calculations were based on established technical
and operational parameters. SLA was defined at 1200s (20 min), representing maximum
total time in the system (queue waiting time + service time). Customer discharge time
was established at 60s (1min), representing time necessary to deliver the order to the
customer. Drone cruise speed was defined at 36 km/h, both for outbound and return
flight. Droneport operation time was established at 120s (2min), including battery swap,

verification, and preparation for next mission.

Complete cycle time calculation: For each mixed order, complete drone cycle time
was calculated, which comprises four sequential components. The first component is
outbound flight, corresponding to flight time from droneport to customer, calculated as
W. The second component is customer discharge, with fixed time of 60s for
order delivery. The third component is return flight, corresponding to flight time from
customer back to droneport, equal to outbound flight. The fourth component is droneport

operation, with fixed time of 120 s for next mission preparation.



CHAPTER 4. DISCUSSIONS 85

Complete cycle time is given by:

—9 ddroneport,customer

tcycle + tdischarge + toperation (46)

Ucruise
For the 9,351 mixed orders analyzed, complete cycle time showed mean of 782.06s
(13.03 min), median of 789.19s (13.15 min), ranging from 195.44s (3.26 min) to 1379.86s
(23.00 min).

Temporal demand distribution analysis: A critical stage of sizing was analysis of
temporal distribution of mixed orders, aiming to identify demand patterns that directly
impact capacity sizing. Analysis revealed that demand is not uniform over time, showing

significant concentrations in specific periods.

Figure 4.22 presents distribution of mixed orders by hour of day and by day of week,
revealing important patterns. Regarding distribution by hour of day, demand is very
low during early morning and morning (Oh—16h), starting significant growth from 17h.
Peaks occur between 19h and 21h, with approximately 1,900 orders at 20h, followed by
gradual decline until midnight. Regarding distribution by day of week, demand increases
progressively throughout the week, with Monday showing lowest volume (approximately
550 orders) and Saturday showing highest volume (approximately 1,900 orders). Weekends

(Friday, Saturday, and Sunday) concentrate substantially larger volumes than weekdays.

Distribuicao de Pedidos Mistos por Hora do Dia Distribuicdo de Pedidos Mistos por Dia da Semana
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FIGURE 4.22 — Temporal distribution of mixed orders: (a) distribution by hour of day, evidencing
demand concentration in evening period (17h—23h) with peak at 20h; (b) distribution by day of week,
showing progressive increase throughout the week with larger volumes on weekends. Temporal analysis
is fundamental to identify peak periods that require greater capacity and system idleness periods.

Combined analysis day of week x hour of day is essential to adequately capture demand
patterns, as different days of week present distinct hourly profiles. Figure 4.23 presents a
detailed heatmap showing order distribution by all possible combinations of day of week

and hour of day.

It is observed that periods of highest demand concentrate in hours 18h—22h, especially
on weekends, with intensities superior to 350 orders per day+hour combination. On the

other hand, early morning periods (0h—7h) and morning (8h—15h) show very low demand,
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FIGURE 4.23 — Heatmap of mixed order distribution by day of week and hour of day. Color intensity
indicates order volume, varying from light yellow (low volume) to dark red (high volume). The heatmap
clearly evidences that periods of highest demand concentrate in hours 18h—22h, especially on weekends
(Friday, Saturday, and Sunday). Early morning and morning periods show very low demand, indicating
potential significant system idleness during these hours.

frequently inferior to 50 orders per combination, indicating that the system sized to meet

peaks will show significant idleness periods during these hours.

Arrival rate (\) calculation: Choice of method to calculate arrival rate A is critical for
sizing, as it will determine necessary system capacity. Three approaches were evaluated.
The first consists of calculating A\ as simple mean of all orders divided by total time
(uniform mean), a simple method but that does not capture demand peaks. The second
consists of using the largest value observed in any day+hour combination (absolute peak),
a very conservative method that may oversize the system. The third consists of using the
95th percentile of mean rate by combination (day of week + hour), a balanced method

that ensures robustness without excessive conservatism.

The 95th percentile method considering day of week + hour combination was chosen,
as this method adequately captures specific patterns of each day of week, ensures that
the system is sized to serve 95% of expected demand scenarios, avoids excessive oversizing
that would result in even larger idleness periods, and offers operational robustness against

demand variations.

For each droneport, arrival rate A was calculated using this method, resulting in specific

values that reflect spatial and temporal demand distribution of each droneport.

Service rate (i) calculation: Service rate u (orders served per hour per drone) was
calculated for each droneport based on mean complete cycle time of orders assigned to

that droneport. As cycle time varies according to distance to customer, each droneport
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presents a distinct service rate u, reflecting spatial characteristics of its coverage area.

Service rate is calculated as: 2600
- (4.7)

tcycle,mean

where tcycle mean 18 mean complete cycle time of orders assigned to the droneport, in seconds.

Sizing via M/M/c model: For each droneport, the M/M/c queueing model was applied
to determine the minimum number of servers (drones) ¢ necessary to guarantee that mean

total time in system W is less than or equal to the 20 min SLA.

The M/M/c model assumes arrivals following Poisson process with rate A, exponential
service times with rate u, ¢ identical servers operating in parallel, and FIFO (First In,

First Out) queue discipline.

For each droneport, the minimum number of drones ¢ that satisfies condition W <
1200 s was calculated iteratively. Metrics calculated by the model include p = ﬁ (system
utilization rate), Py (empty system probability), P, (probability of finding queue upon
arrival), W, (mean queue waiting time), and W (mean total time in system, waiting +

service).

Sizing results: Application of the M/M/c model to the 4 droneports resulted in the

following sizing:

TABLE 4.8 — M/M/c sizing results by droneport.

Droneport A (ord/h) p (ord/h) ¢ p (%) W (min) P(exceed SLA) (%)
Droneport 1 12,45 4,57 4 68,12 17,25 2,73
Droneport 2 10,14 4,11 4 61,63 17,52 3,76
Droneport 3 3,99 5,01 2 39,88 14,25 3,06
Droneport 4 4,57 5,99 2 38,21 11,74 1,80
Total — — 12 — — —

Figure 4.24 presents detailed visualizations of sizing results, including number of drones
per droneport, utilization rate, mean time in system compared to SLA, and relationship

between arrival rate and total capacity.

SLA guarantee analysis: In addition to mean time in system, analysis of SLA ex-
ceedance probability was performed through calculation of P(W > 1200s). For M/M/c

queues in steady state, probability of time in system exceeding a value t is given by:
P(W >t)= P, -exp(—(c-p—A)-t) (4.8)

where P, is probability of finding queue and (c¢- pu — A) is queue reduction rate when all

servers are busy.
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FIGURE 4.24 — M/M/c sizing analysis by droneport: (a) minimum number of drones necessary to meet
20-minute SLA, showing that Droneports 1 and 2 require 4 drones each, while Droneports 3 and 4 require
2 drones each; (b) utilization rate (p) by droneport, evidencing that all operate below 100% (instability
limit), with Droneports 1 and 2 showing higher utilization; (¢) mean total time in system (W) compared
to SLA, confirming that all droneports meet SLA; (d) relationship between arrival rate (A) and total
capacity (c- ), showing that capacity exceeds demand in all cases.
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Figure 4.25 presents detailed SLA exceedance analysis by droneport, including ex-
ceedance probability, expected number of orders that would exceed SLA, and relationship

between mean time and exceedance probability.
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FIGURE 4.25 — SLA exceedance analysis by droneport: (a) probability of exceeding 20-minute SLA,
showing that Droneport 1 presents highest probability (5,73%), while Droneport 4 presents lowest proba-
bility (1,80%); (b) expected number of orders that would exceed SLA, evidencing that approximately 415
orders (4,4% of total) could exceed SLA; (c) mean time in system vs SLA, confirming that all meet SLA
on average; (d) relationship between mean time and exceedance probability, showing positive correlation
between these metrics.

Exceedance analysis results indicate that mean exceedance probability is 3,59% of
total mixed orders. Sizing guarantees that, on average, 96,41% of orders will be served
within the 20-minute SLA. Droneport 1 presents highest exceedance probability (5,73%),
while Droneport 4 presents lowest probability (1,80%). Approximately 415 orders (4,4%
of total of 9,351 mixed orders) could exceed SLA.

Final sizing decision: Based on M/M/c analysis and SLA guarantee evaluation, the
following sizing configuration was defined: Droneport 1 with 4 drones (utilization rate
68,12%, mean time 17,25 min), Droneport 2 with 4 drones (utilization rate 61,63%, mean
time 17,52 min), Droneport 3 with 2 drones (utilization rate 39,88%, mean time 14,25

min), and Droneport 4 with 2 drones (utilization rate 38,21%, mean time 11,74 min).

Total drones: 12 drones for the complete system (mean of 3 drones per droneport).
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Decision justification: This configuration was chosen to guarantee that all droneports
present mean time in system inferior to 20 minutes (mean SLA), that mean exceedance
probability of 3,59% implies that approximately 96,41% of orders will be served within
SLA (SLA in 95% of orders), and that droneports with highest demand (1 and 2) receive
greater capacity, while those with lower demand (3 and 4) receive proportionally smaller

capacity (operational balance).

Important observation on individual guarantee: It is important to highlight that
sizing guarantees SLA on average and for approximately 95% of orders, but does not
guarantee that each droneport individually will always serve 100% of orders within SLA.
During exceptional peak periods or extreme events, some orders may exceed SLA even
with adequate sizing. This is an inherent limitation of stochastic queueing models, which

work with probabilities and means instead of absolute deterministic guarantees.

Operational implications: Sizing analysis reveals several important operation char-
acteristics. Regarding idleness periods, as sizing was performed to meet demand peaks
(95th percentile), the system will show significant idleness periods during low-demand
hours (early morning, morning, and early afternoon). Mean utilization rate of 51,96%

indicates that, on average, approximately half of system capacity will be idle.

Regarding demand concentration, Droneports 1 and 2, which serve highest-volume
restaurants, show higher arrival rates and consequently require greater capacity. This

reflects asymmetry in demand distribution identified in previous exploratory analysis.

Regarding capacity vs cost trade-off, sizing was optimized to guarantee SLA without
excessive oversizing. Alternatives with greater number of drones would further reduce
exceedance probability, but would increase investment and operation costs, in addition to

resulting in higher mean idleness.

This sizing provides the basis for subsequent economic-financial analyses, where oper-

ational and investment costs necessary to maintain this service capacity will be evaluated.

Stage 12: Energy Consumption Analysis and Battery Sizing

The processing executed in notebook 09 — 09_energy_consumption_analysis.ipynb
— implemented the ninth stage of the operational pipeline (Section 3.3), performing
calculation of energy consumption of each aerial mission using the segment-by-segment
model presented in Section 2.2 of Chapter 2. This stage is fundamental to determine
not only energy viability of missions, but also to adequately size the number of batteries
necessary per droneport, ensuring continuous operation without interruptions due to lack

of charged batteries.

Applied energy model: The model used decomposes consumed power into two main
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components, as presented in Section 2.2. The first component is hover power (Pioyer),
responsible for stationary flight and transition phases, calculated by Froude theory ac-
cording to Equation (2.8):

(mg)*?

Phover =
nv2pA

where m is total mass (drone + cargo), g is gravitational acceleration, 7 is global electrical-

(4.9)

mechanical efficiency, p is air density, and A is rotor disk area.

The second component is parasite power (Pparasite), resulting from body drag during

cruise, calculated according to Equation (2.9):
Pparasite = %pSOD(V + Uw)3 (410)

where S is frontal body area, Cp is drag coefficient, V' is drone forward speed, and v,, is

headwind component projected in flight direction.

Physical and operational parameters: Calculations were performed using technical
parameters based on commercial class 3 cargo drone specifications: empty mass of 7.2 kg,
mean cargo of 1.0 kg, and maximum cargo capacity of 2.4 kg; rotor radius of 0.5 m, frontal
body area of 0.15m, and drag coefficient of 0,5; global electrical-mechanical efficiency (n)
of 0,72; cruise speed of 36 km/h (10m/s), climb and descent speed of 18 km/h (5m/s);
cruise altitude of 50m; and total battery capacity of 400 Wh, with usable capacity of
360 Wh (90% of total capacity, reserving 10% as safety margin).

Flight segmentation: Each delivery mission was segmented into six distinct phases,
each with its own mass, speed, and aerodynamic configuration characteristics: climb
(loaded), corresponding to flight from droneport to cruise altitude with loaded drone;
outbound cruise (loaded), corresponding to horizontal flight from droneport to customer
maintaining cruise altitude with loaded drone; descent (loaded), corresponding to descent
from cruise altitude to ground at customer location with loaded drone; return cruise
(empty), corresponding to horizontal flight from customer back to droneport maintaining
cruise altitude with empty drone; return climb (empty), corresponding to climb back to
cruise altitude after return with empty drone; and landing hover (empty), corresponding

to hover phase before landing at droneport with fixed duration of 30s with empty drone.

For each segment, hover and parasite powers were calculated, considering segment
mass (loaded or empty) and segment duration time, obtaining consumed energy through

temporal integration: Ej = (Phoverk + Pparasite k) Alk.

Integration with wind data: An important characteristic of the model is integration of
ERAS5 wind data to consider impact of meteorological conditions on energy consumption.
For each order, headwind component (v,) projected in flight direction was calculated,

using flight azimuth calculation (geographic flight direction droneport — customer, calcu-
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lated from geographic coordinates), wind projection (wind component in flight direction,
considering that headwind v,, > 0 increases consumption and tailwind v,, < 0 reduces
consumption), and segmented application (wind component was calculated separately for

outbound and return, as flight direction is opposite in these segments).

Wind data used are from ERA5 database for the period June to August 2024, mapped
to 2025 orders through correspondence by month, day, and hour (ignoring year). This
approach allows capturing seasonal and hourly wind patterns without need for specific
2025 data.

Figure 4.26 presents distribution of headwind components for cruise segments in out-
bound and return. In outbound, distribution shows slight tendency for tailwind (negative
values), with median of —0.086 m/s. In return, distribution shows slight tendency for
headwind (positive values), with median of 0.086m/s. Both distributions are approxi-
mately symmetric and centered near zero, indicating that extreme wind conditions are

relatively rare.
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FIGURE 4.26 — Distribution of headwind components in cruise segments: (a) outbound distribution,
showing slight tendency for tailwind (negative values); (b) return distribution, showing slight tendency
for headwind (positive values). The dashed red line indicates no-wind condition (v, = 0).

Figure 4.27 presents relationship between headwind component and energy consump-
tion in cruise segments, evidencing significant impact of wind on consumption. Positive
correlation between headwind and consumed energy is observed: in outbound cruise, cor-
relation is 0,346, indicating that headwind substantially increases consumption; in return
cruise, correlation is 0,361, similar to outbound. Impact is non-linear: the cubic term
in parasite power equation results in more pronounced impact for strong headwinds — a

20% increase in vy, elevates Ppaasite by approximately 73%.

Energy consumption results: The model was applied to the 9,351 orders classified
as mixed delivery, resulting in mean energy per order of 157.21 Wh (39,30% of battery
capacity), median energy of 158.74 Wh (39,69% of capacity), minimum energy of 13.14 Wh
(3,28% of capacity), maximum energy of 332.54 Wh (83,13% of capacity), and standard
deviation of 66.13 Wh.
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FIGURE 4.27 — Relationship between headwind component and energy consumption in cruise segments:
(a) outbound cruise, showing positive correlation (0,346) between headwind and energy; (b) return cruise,

showing similar correlation (0,361). Consumption in return cruise is slightly smaller than outbound due
to lower mass (empty drone).

Energy viability: All 9,351 mixed orders (100%) are viable from an energy perspective,
that is, consume energy inferior to the usable limit of 360 Wh. This confirms that battery
capacity of 400 Wh is adequate to serve all considered missions, maintaining 10% safety
margin.

Figure 4.28 presents mean contribution of each segment to total energy consumption.
Outbound cruise is the largest consumer, representing 41,76% of total (65.65 Wh on aver-
age). Return cruise is the second largest consumer, representing 35,18% of total (55.30 Wh
on average). Together, the two cruise segments represent 76,94% of total consumption.
Climb and return climb contribute moderately (7,88% and 6,50%, respectively), while

descent and landing hover are the smallest consumers (5,54% and 3,15%, respectively).
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FIGURE 4.28 — Energy distribution by flight segment: (a) bar chart with mean contribution in Wh;
(b) pie chart with percentage distribution. Cruise segments (outbound and return) are responsible for
approximately 77% of total consumption.

Battery usage profile: Figure 4.29 presents distribution of energy consumed per or-
der. Distribution shows mode near 100 Wh to 120 Wh, indicating concentration of short-

distance orders. Distribution is slightly right-skewed, with tail extending to approximately
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330 Wh. Mean (157.2 Wh) is close to median (158.74 Wh), indicating relatively balanced
distribution. All orders are well below the usable limit of 360 Wh.
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FIGURE 4.29 — Distribution of energy consumed per order. The dashed green line indicates mean
(157.2Wh) and the dashed red line indicates usable battery limit (360 Wh). All orders are within safety
limit.

Figure 4.30 presents relationship between energy consumed and flight distance, con-
firming expected relationship. Strong positive correlation between distance and energy
consumed is observed, with relatively linear distribution and proportional energy increase
as distance increases. Orders of shorter distance (up to 2km) typically consume between
50 Wh and 150 Wh, while orders of longer distance (above 5km) typically consume be-
tween 250 Wh and 330 Wh. All points are below the usable limit, confirming energy

viability for all considered distances.

Battery sizing by droneport: Once number of drones per droneport was determined
(Stage 11), it was necessary to size the number of batteries necessary to guarantee contin-
uous operation. Sizing considered the following operational parameters: charging time of
45min per battery, droneport operation time of 120s (2min) including battery swap and
preparation, 24 hours of operation per day (continuous operations), 365 days of operation
per year, and usable battery capacity of 360 Wh (90% of 400 Wh).

Calculation methodology: Number of batteries per drone was determined considering

that a battery can perform approximately 2,3 orders before needing to be recharged (based
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FIGURE 4.30 — Relationship between energy consumed and flight distance. The dashed red line indicates

usable battery limit (360 Wh). Strong positive correlation between distance and energy is observed, with
all orders within safety limit.
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on mean energy of 157.21 Wh per order), flight time until discharge is approximately 0.60 h
(36 minutes) until reaching usable limit, to maintain continuous operation while a battery
is charging (0.75h) the drone needs another battery to continue flying, and a 20% safety

margin was added to consider demand variations and operational conditions.

Calculation resulted in need of 3 batteries per drone, rounded up from theoretical

minimum ratio of 2,69 batteries/drone.

Sizing results: Table 4.9 presents battery sizing by droneport, considering number of

drones determined in Stage 11.

TABLE 4.9 — Battery sizing by droneport

Droneport  Drones Batteries/drone Total batteries Orders/year

Droneport 1 4 3 12 18,552
Droneport 2 4 3 12 9,824
Droneport 3 2 3 6 5,172
Droneport 4 2 3 6 3,856
Total 12 3 36 37,404

Charging cycles throughout the year: Considering that analysis was performed for 3
months (June, July, and August), values were multiplied by 4 to obtain annual estimates.
Total energy consumed throughout an operational year is 5880.43 kWh, distributed among
the 36 batteries of the system.

Number of charging cycles per battery throughout the year varies according to de-
mand of each droneport: Droneport 1 presents 153,41 cycles/battery/year (highest de-
mand), Droneport 2 presents 92,22 cycles/battery/year, Droneport 3 presents 76,33 cy-
cles/battery/year, Droneport 4 presents 44,95 cycles/battery/year (lowest demand), and
general mean is 408,36 cycles/battery/year.

These charging cycle values are important to evaluate battery life and estimate re-
placement costs over time. Considering that typical lithium batteries present life of ap-
proximately 400 to 500 complete charging cycles, proposed sizing results in operation

within expected life limits, with adequate margin for operational variations.

Battery utilization distribution: Analysis reveals that mean utilization is 39,30% of
battery capacity per order, median utilization is 39,69% of capacity, maximum observed
utilization is 83,13% of capacity, and percentiles are P10 = 17,25%, P50 = 39,69%, P90
= 60,90%, and P99 = 75,37%.

This distribution indicates that battery capacity is adequately sized, with most orders
using less than half of available capacity. This allows sufficient safety margin to deal
with adverse conditions (strong winds, cargo variations), operational flexibility to perform

multiple consecutive orders without immediate need for recharge, and extended life, as
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lower depth of discharge generally results in greater battery life.

This energy analysis provides the basis for subsequent economic-financial calcula-
tions, where electricity costs (OpEx) and battery depreciation (CapEx) will be evaluated

throughout the operational life cycle.

4.2 Discussion of Economic-Financial Results

Completed operational and energy analysis of the DaaS system, economic-financial
viability evaluation constitutes the final stage to determine if the proposed model is sus-
tainable from a financial perspective. This section presents detailed analysis of capital
costs (CapEx) and operational costs (OpEx), establishing direct comparisons with the

motorcycle delivery model to identify operational viability points.

The adopted methodological approach starts from a fundamental premise: before eval-
uating sophisticated investment attractiveness metrics — such as net present value (NPV),
internal rate of return (IRR), and risk analyses — it is essential to establish if the DaaS
model can operate with a competitive OpEx per order relative to the terrestrial mode.
This is a necessary, although not sufficient, condition: if OpEx per order via drone is
significantly greater than OpEx per order via motorcycle, there is no point in advancing
to investor return analyses, as the model would not be operationally sustainable even

considering a possible premium on drone order price.

4.2.1 CapEx Analysis (Capital Expenditure)

Initial investment (CapEx) represents all capital expenditures made in year zero of the
project, constituting the amount necessary to start DaaS service operation. This analysis
was performed in notebook 10 — 10_financial_analysis.ipynb — and considers seven

main categories of initial investment, as described in Section 3.4 of Chapter 3.

Premises and Limitations

An important limitation of this analysis refers to acquisition costs of drones used.
Calculations are based on data from Keeta G-4 (generation 4) drones, which are aircraft
of own manufacture by Keeta company, commercialized through direct sale and not avail-
able in the open market. As a result, acquisition cost values used in this analysis are
estimates based on benchmarking with similar commercial class 3 BVLOS drones and do

not correspond to official public sale price values.

Need for estimates results from the scope of this work, which seeks to evaluate economic
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viability of the DaaS model using real technical specifications of drones in commercial
operation. Although this limitation should be recognized, estimated values were validated
through comparison with market prices of commercial drones with similar characteristics
(class 3, cargo capacity of 2,27 kg, range up to 24 km) and are within reasonable ranges

for equipment of this category.

In addition to drone acquisition costs, other CapEx categories also incorporate esti-
mates when it was not possible to obtain official values or direct quotes, especially for
droneport infrastructure items and certified safety equipment. All estimates were docu-
mented and are subject to refinement through direct quotes with suppliers in subsequent

analyses.

Another important premise is the choice of acquisition modality instead of leasing
for CapEx calculation. This decision simplifies initial analysis and allows evaluating to-
tal necessary investment, and can be refined in future analyses that consider different

financing structures.

CapEx Categories

CapEx was calculated considering seven main categories, described below:

1. Drone Acquisition: Corresponds to purchase cost of drones necessary for fleet
operation. Number of drones was determined through sizing performed in Stage 11 (Sec-
tion ??), using M/M/c queueing model to guarantee 20-minute SLA service. Calculation
considers 12 drones in total, distributed among the 4 droneports as presented in Table 4.9.
Estimated unit cost is USD 20,000,00 (BRL 100,000,00) per drone, resulting in total in-
vestment of USD 240,000,00 (BRL 1,200,000,00).

2. Extra Batteries: Refers to additional batteries necessary to guarantee continuous
operation, allowing drones to remain in operation while other batteries are in charging
process. Battery sizing was performed in Stage 12 (Section 4.1.1), resulting in need of 3
batteries per drone, totaling 36 batteries for the entire fleet. Estimated unit cost is USD
1,000,00 (BRL 5,000,00) per battery, resulting in total investment of USD 36,000,00 (BRL
180,000,00).

3. Safety Equipment: Includes mandatory equipment according to RBAC-E 94 reg-
ulation (CIVIL, 2023b): certified parachute and remote kill-switch system. Each drone
requires a complete set of this equipment. Estimated cost is USD 1,500,00 (BRL 7,500,00)
per certified parachute and USD 350,00 (BRL 1,750,00) per kill-switch, totaling USD
1,850,00 (BRL 9,250,00) per drone. For the 12 drones, total investment is USD 22,200,00
(BRL 111,000,00).

4. Droneport Infrastructure: Comprises three main components per droneport: phys-
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ical structure (landing platform, maintenance area), fast charging stations for batteries,
and meteorological protection (coverage, security system). Estimated cost per droneport is
USD 15,500,00 (BRL 77,500,00), distributed between physical structure (USD 10,000,00),
charging stations (USD 3,500,00), and meteorological protection (USD 2,000,00). For the
4 droneports, total investment is USD 62,000,00 (BRL 310,000,00).

5. Software and Communication: Includes fleet management software (operational
control, monitoring, routing) and C2 (Command and Control) communication infrastruc-
ture for each droneport. Fleet management software is considered a unique investment
for the entire operation, with estimated cost of USD 30,000,00 (BRL 150,000,00). C2
communication infrastructure (antennas, radios, communication systems) has estimated
cost of USD 3,500,00 (BRL 17,500,00) per droneport. Total investment is USD 44,000,00
(BRL 220,000,00).

6. Regulatory Licensing: Corresponds to initial certification and homologation costs
necessary for commercial operation: RBAC-E 94 certification (ANAC) (CIVIL, 2023b)
and ANATEL homologation for communication equipment (OES, 2019). Estimated cost
is USD 10,000,00 (BRL 50,000,00) for RBAC-E 94 certification and USD 2,000,00 (BRL
10,000,00) for ANATEL homologation, totaling USD 12,000,00 (BRL 60,000,00).

7. Training: Refers to initial training of remote operators and technical support
personnel. Calculation considers training of 3 remote operators and 2 maintenance tech-
nicians, with estimated cost of USD 1,000,00 (BRL 5,000,00) per person. Total investment
is USD 5,000,00 (BRL 25,000,00).

Consolidated Results

Table 4.10 presents detailed CapEx breakdown by component, consolidating all initial

investments necessary to start DaaS service operation.

TABLE 4.10 — Detailed CapEx breakdown by component

Component Total Cost (USD) Total Cost (BRL) Percentage
Drone Acquisition 240,000,00 1,200,000,00 56,98%
Extra Batteries 36,000,00 180,000,00 8,55%
Safety Equipment 22,200,00 111,000,00 5.27%
Droneport Infrastructure 62,000,00 310,000,00 14,72%
Software and Communication 44,000,00 220,000,00 10,45%
Regulatory Licensing 12,000,00 60,000,00 2,85%
Training 5,000,00 25,000,00 1,19%
Total CapEx 421,200,00 2,106,000,00 100,00%

Total CapEx necessary to start operation is USD 421,200,00 (BRL 2,106,000,00). Fig-
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ure 4.31 presents visualization of CapEx distribution by component, evidencing that drone
acquisition represents the largest portion of investment (56,98%), followed by droneport
infrastructure (14,72%) and software and communication (10,45%).
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FIGURE 4.31 — CapEx distribution by component: (a) horizontal bar chart with absolute values in
thousand USD; (b) pie chart with percentage distribution. Drone acquisition represents approximately
57% of total investment.

CapEx by Droneport

Figure 4.32 presents CapEx breakdown distributed by droneport, evidencing significant
differences between larger droneports (Droneport 1 and 2) and smaller ones (Droneport 3
and 4).
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FIGURE 4.32 — CapEx by droneport with breakdown by component. Droneports 1 and 2 show higher
investment due to greater number of drones (4 drones each), while Droneports 3 and 4 operate with 2
drones each. Shared costs (regulatory, software) were allocated proportionally.

Droneports 1 and 2 show total CapEx of approximately USD 130,000,00 each, while
Droneports 3 and 4 show total CapEx of approximately USD 80,000,00 each. This differ-
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ence results mainly from greater number of operational drones in the first droneports (4

drones) compared to the latter (2 drones), as determined by fleet sizing (Stage 11).

Shared costs — regulatory licensing, fleet management software, and training — were
allocated proportionally among droneports based on number of drones of each unit. This
allocation methodology reflects that these investments benefit the entire operation, but

their utilization is distributed according to scale of each droneport.

Detailed results of CapEx calculation were exported to file capex_breakdown.csv,
available in data/results/ of notebook 10, allowing transparency and reproducibility of

analysis.

4.2.2 OpEx Analysis (Operational Expenditure)

Operational costs (OpEx) represent all recurring expenditures necessary to maintain
DaaS service operation throughout a year, different from CapEx which corresponds to
non-recurring initial investments. This analysis complements CapEx evaluation and is
fundamental to determine operational viability of the model, especially through the OpEx

per order metric, which allows direct comparison with the motorcycle delivery model.

OpEx calculation was performed in notebook 10 — 10_financial_analysis.ipynb —
considering eight main categories of recurring operational costs, as described in Section 3.4
of Chapter 3.

OpEx Categories

OpEx was calculated considering eight main categories, described below:

1. Electricity Consumption: Corresponds to cost of electrical energy necessary to
charge drone batteries throughout the year. Calculation uses mean electricity tariff of
USD 0,63 per kWh (approximately BRL 3,15 per kWh, considering exchange rate of USD
1 = BRL 5), applied to total energy consumption calculated in Stage 12 (Section 4.1.1).
Total energy consumed throughout an operational year is 5880.43 kWh, considering the
37,404 orders served and charging cycles necessary to maintain continuous operation.
Annual electricity cost is USD 882,07 (BRL 4,292,72).

2. Maintenance: Includes preventive and corrective maintenance costs of drones
throughout the year. Preventive maintenance is performed according to operational in-
tervals recommended by manufacturer, while corrective maintenance covers replacement
of components such as rotors, sensors, and other elements subject to wear. Calculation
considers mean annual costs per drone, totaling USD 6,600,00 (BRL 33,000,00) for the

entire fleet of 12 drones.
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3. Battery Replacement: Refers to cost of replacing batteries that reach end of their
useful life throughout the operational year. Calculation is based on number of charging
cycles per battery and expected battery life (approximately 400 to 500 complete cycles).
Considering that mean cycles per battery throughout the year is 408,36 cycles (Stage 12)
and assuming useful life of 450 cycles, annual replacement rate is approximately 90,75%
of total number of batteries. Replacement cost uses the same unit value as CapEx (USD
1,000,00 per battery), resulting in annual cost of USD 32,669,08 (BRL 163,345,40).

4. Insurance: Comprises two types of mandatory insurance: aeronautical civil liability
insurance (RC-RETA), with minimum coverage of R$ 500,000 according to regulation,
and equipment insurance, which covers drones and equipment against damage and losses.
RC-RETA insurance has annual cost of USD 2,400,00 (BRL 12,000,00) per drone, while
equipment insurance corresponds to approximately 2% of insured value per year. Total
annual insurance cost is USD 34,764,00 (BRL 173,820,00).

5. Salaries and Operation: Represents the largest portion of OpEx and includes costs
with personnel necessary for service operation. Calculation considers two main groups:
remote operators and technical support personnel. For remote operators, the necessary
for complete 24-hour operation coverage was considered, which demands 3 work shifts
(8 hours each shift). Each shift requires 1 remote operator, totaling 3 operators for
continuous coverage. Additionally, 2 technical support people available during the week
were considered for maintenance, operational support, and emergency response. Hourly
values consider Brazilian market reality for these specialized functions. Total annual

salary and operation cost is USD 113,700,00 (BRL 568,500,00).

6. Amortization: Corresponds to linear amortization of investments in software and
infrastructure made in CapEx, recognizing that these assets have limited useful life and
must have their value depreciated over time. Amortization considers two main compo-
nents: fleet management software (useful life of 5 years) and communication and droneport
infrastructure (useful life of 7 years). Although amortization does not represent an ef-
fective cash disbursement, it reflects economic degradation of investments and is impor-
tant for adequate financial evaluation. Annual amortization cost is USD 16,857,14 (BRL
84,285,71).

7. Operational Licenses: Includes fees and annual renewals necessary to maintain reg-
ulatory operation: RBAC-E 94 certification renewal (ANAC) (CIVIL, 2023b), SARPAS
fees (Sistema de Autorizacdo de Rastreamento de Produtos Aeronduticos) (AEREO,
2022), and ANATEL homologation renewal (OES, 2019). Although these licenses are

part of operational cost, they also reflect regulatory cost of maintaining legalized opera-
tion. Total annual operational license cost is USD 3,300,00 (BRL 16,500,00).

8. Facility Rental: Refers to rental cost of physical spaces where droneports are
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located. Calculation considers a monthly value per droneport, which was estimated at
a high value relative to mean commercial rental in Brazil, reflecting need for strategic
locations, adequate for drone operation (access, security, proximity to high-demand areas).
For the 4 droneports, annual rental cost is USD 48,000,00 (BRL 240,000,00).

Consolidated Results

Table 4.11 presents detailed OpEx breakdown by component, consolidating all annual

operational costs necessary to maintain DaaS service operation.

TABLE 4.11 — Detailed OpEx breakdown by component (annual)

Component Annual Cost (USD) Annual Cost (BRL) Percentage
Electricity Consumption 882,07 4,292,72 0,34%
Maintenance 6,600,00 33,000,00 2,57%
Battery Replacement 32,669,08 163,345,40 12,72%
Insurance 34,764,00 173,820,00 13,54%
Salaries and Operation 113,700,00 568,500,00 44.28%
Amortization 16,857,14 84,285,71 6,57%
Operational Licenses 3,300,00 16,500,00 1,29%
Facility Rental 48,000,00 240,000,00 18,69%
Total Annual OpEx 256,772,29 1,283,743,83 100,00%

Total annual OpEx necessary to maintain operation is USD 256,772,29 (BRL 1,283,743,83).
Figure 4.33 presents visualization of OpEx distribution by component, evidencing that
salaries and operation represent the largest portion of operational cost (44,28%), followed
by facility rental (18,69%) and insurance (13,54%).
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FIGURE 4.33 — OpEx distribution by component: (a) horizontal bar chart with absolute values in
thousand USD; (b) pie chart with percentage distribution. Salaries and operation represent approximately
44% of total operational cost.
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OpEx per Order

A fundamental metric for viability evaluation is OpEx per order, which allows directly
comparing operational cost of the DaaS model with operational cost of the motorcycle
delivery model. This indicator is calculated by dividing total annual OpEx by number of

orders served throughout the year.

Considering that the system serves 37,404 orders throughout an operational year
(based on 3-month analysis multiplied by 4 for annual projection), OpEx per order is

calculated as:

Total annual OpEx ~ USD 256, 772,29

Number of annual orders 37,404 =USD 6,86  (4.11)

OpEx per order =

OpEx per order via drone is USD 6,86 (approximately BRL 34,30). This metric will
be fundamental for comparative analysis with the motorcycle delivery model, which will
be presented in the next subsection, allowing evaluation if the DaaS model can operate

with competitive costs relative to traditional terrestrial mode.

It is important to highlight that salaries and operation represent the largest portion
of OpEx (44,28%), followed by facility rental (18,69%). These two components together
represent more than 60% of total operational cost, indicating that optimizations in oper-
ational efficiency and facility cost negotiation can have significant impact on OpEx per

order reduction.

Electricity consumption, in turn, represents only 0,34% of total OpEx, confirming that
energy is not a limiting factor from an economic perspective, despite being fundamental

for technical viability of operations.

Detailed results of OpEx calculation were exported to file opex_breakdown.csv, avail-
able in data/results/ of notebook 10, allowing transparency and reproducibility of anal-

ysis.

Exploratory Analysis: Vertical Scale and OpEx per Order Variation

Initial sizing presented previously considers an operation at relatively small scale,
serving 37,404 orders throughout an operational year. In this context, it was identified
that salaries and operation represent 44,28% of total OpEx, while facility rental represents
18,69% — totaling more than 60% of operational cost in components that are essentially

fixed, regardless of volume of orders served.

This result may seem counterintuitive at first glance, given that we are replacing an
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intrinsically human operation (deliveries by humans and vehicles) with an autonomous
operation. However, this cost distribution precisely reflects the scale problem: in small
operations, fixed costs — especially operational personnel and infrastructure — are diluted

over a limited volume of orders, resulting in high OpEx per order.

To understand how these costs vary with operation expansion in the same city, an
exploratory analysis was performed in notebook 10 — 10_financial_analysis.ipynb —
exploring vertical scale strategies, that is, increasing served demand without increasing
existing infrastructure (number of drones, droneports, operational personnel, or facility
rental). This analysis aims to identify potential for OpEx per order reduction through

better utilization of installed capacity.

Figure 4.34 presents demand distribution by hour of day observed in historical data,
evidencing enormous concentration of orders in evening hours (18h—23h) and practically
non-existent demand during daytime period (5h—17h). This asymmetric distribution is a
reflection of the profile of restaurants already served by Brendi platform, which concentrate

in establishments with predominantly evening operation.
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FIGURE 4.34 — Demand distribution by hour of day in the analyzed period. Concentration of orders in
evening hours (18h—23h) evidences significant infrastructure idleness during daytime period, especially
between 5h and 17h. Evening period (21h—4h) is highlighted in light purple.

First Approach: Theoretical Maximum Load Calculation The first exploratory ap-
proach aims to determine the theoretical minimum OpEx that would be possible to
achieve operating existing infrastructure at its maximum capacity, minimizing idleness

while guaranteeing 20-minute SLA service for 95% of orders.

Methodology: Calculation was performed assuming current infrastructure — 4 droneports
and 12 drones — and using arrival rate A of the 95th percentile of the M/M/c model used
in fleet sizing (Stage 11, Section ??). This rate represents the maximum load that the
system can support maintaining probability of exceeding SLA at maximum 5% (that
is, guaranteeing that 95% of orders are served within 20 minutes). Calculation main-

tains fixed all OpEx components that do not vary with number of orders: salaries and
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operation, facility rental, amortization, and operational licenses. Only components pro-
portional to order volume are recalculated: electricity consumption, maintenance, battery

replacement, and equipment insurance.

Results: Maximum theoretical annual demand that the system can serve maintaining
95% SLA is 68,050 orders, representing an increase of 81,9% relative to current demand
(37,404 orders). Total annual OpEx increases due to variable components that are propor-
tional to order volume (electricity consumption, maintenance, battery replacement, and
equipment insurance). However, as fixed components — salaries and operation, facility
rental, amortization, and operational licenses — represent more than 70% of total OpEx
and do not vary with order volume, increase in total OpEx is proportionally smaller than
demand increase. As a result, OpEx per order at theoretical maximum load is USD 3,77,
representing a reduction of 45,0% relative to initial OpEx of USD 6,86 per order, achieved

through dilution of fixed costs over a larger volume of orders.

Table 4.12 presents detailed distribution of OpEx per order at maximum load, evi-

dencing how each cost category contributes to theoretical minimum OpEx.

TABLE 4.12 — OpEx per order distribution at theoretical maximum load (68,050 orders/year)

Category OpEx/Order (USD) % of Total
Electricity Consumption 0,0130 0,34%
Maintenance 0,0970 2.57%
Battery Replacement 0,4801 12,72%
Insurance 0,5109 13,54%
Salaries and Operation 1,6708 44,28%
Amortization 0,2477 6,57%
Operational Licenses 0,0485 1,29%
Facility Rental 0,7054 18,69%
TOTAL 3,7733 100,00%

It is important to highlight that this result represents a theoretical minimum limit of
OpEx per order, assuming that it would be possible to achieve this demand distributed
ideally throughout the year, maintaining the system operating near maximum capacity
during the entire period. In practice, this scenario is difficult to achieve due to seasonal,
intraday, and between-days-of-week variations observed in historical data, in addition to

need to maintain operational safety margins.

Second Approach: Demand Mirroring A more realistic and plausible approach to
achieve consists of exploring temporal demand redistribution strategies, taking advan-
tage of infrastructure idleness periods. As evidenced by Figure 4.34, the system shows
significant idleness during daytime period, especially between 10h and 15h, traditional

lunch time.
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Although current restaurant portfolio of Brendi platform concentrates in establish-
ments with evening operation, this does not mean that there is no potential delivery
demand at lunch time in Sao José dos Campos. A go-to-market (GTM) strategy directed
at restaurants that operate predominantly at lunch time could increase demand in this

period, improving utilization of installed infrastructure.

Methodology: A demand mirroring strategy was implemented, where order distri-
bution observed in evening period (17h—22h) is replicated to lunch period (10h-15h),
applying a volume correction factor to reflect that potential lunch demand may not reach
the same volumes observed in evening period. Specifically, a mirroring factor was applied

that maps each hour of evening period to a corresponding hour in lunch period:

For each pair of mapped hours, a volume correction factor of 60% was applied, that
is, 60% of demand observed in evening hour is added to already existing demand in cor-
responding hour of lunch period. This factor reflects a conservative estimate of potential
demand that could be captured through directed GTM strategy.

Results: Total annual demand after mirroring is 57,645 orders, representing an in-
crease of 54,1% relative to current demand. Total annual OpEx increases due to variable
components that are proportional to order volume (electricity consumption, maintenance,
battery replacement, and equipment insurance), which grow with greater number of flights
performed. However, as fixed components — salaries and operation, facility rental, amor-
tization, and operational licenses — do not vary with order volume and represent the
largest portion of total OpEx, increase in total OpEx is proportionally smaller than de-
mand increase. As a result, OpEx per order after mirroring is USD 4,45, representing a
reduction of USD 2,39 (35,0%) relative to initial OpEx, achieved through dilution of fixed

costs over a larger volume of orders.

Figure 4.35 presents hourly demand distribution before and after mirroring, visually

evidencing redistribution of orders from evening period to lunch period.

Table 4.13 presents detailed distribution of OpEx per order after mirroring, including

absolute and percentage reduction of each category relative to initial scenario.

Figure 4.36 presents a visual comparison of OpEx per order before and after mirroring,

highlighting reduction of USD 2,39 per order achieved through this strategy.

It is important to highlight that demand mirroring represents a plausible and achiev-
able scenario through business strategies, different from theoretical maximum load sce-
nario that assumes ideal operational conditions difficult to replicate in practice. Mirroring
strategy does not require changes in physical infrastructure or personnel structure, being
dependent only on capacity to attract new restaurants with operational profile comple-

mentary to current profile.
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Demanda Antes vs Depois do Espelhamento (17h-22h - 10h-15h)
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FIGURE 4.35 — Demand distribution before and after mirroring (17h—22h — 10h-15h). Blue bars rep-
resent original demand, while red bars represent demand after mirroring. Green arrows visually indicate
mapping between evening hours and lunch hours. Shaded areas highlight periods involved in mirroring:
light purple for source evening period (17h-22h) and light red for target lunch period (10h—-15h).

TABLE 4.13 — OpEx per order distribution after demand mirroring (57,645 orders/year)

Category OpEx/Order (USD) % of Total Reduction (USD)
Salaries and Operation 1,9724 44,28% 1,0591
Facility Rental 0,8327 18,69% 0,4471
Insurance 0,6031 13,54% 0,3238
Battery Replacement 0,5667 12,72% 0,3043
Amortization 0,2924 6,56% 0,1571
Maintenance 0,1145 2.57% 0,0615
Operational Licenses 0,0572 1,28% 0,0308
Electricity Consumption 0,0153 0,34% 0,0082

TOTAL 4,4543 100,00% 2,3919
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FIGURE 4.36 — OpEx per order comparison before and after demand mirroring. Reduction of USD
2,39 per order (from USD 6,86 to USD 4,45) represents significant improvement in operational efficiency
through better utilization of existing infrastructure.

Comparative Discussion of Scenarios Table 4.14 presents a consolidated comparison
of the three analyzed scenarios, allowing visualization of potential for OpEx per order

reduction through vertical scale strategies.

TABLE 4.14 — OpEx per order comparison in different vertical scale scenarios

Scenario Annual Demand OpEx/Order (USD) Reduction
Current Demand 37,404 6,36 —
Demand Mirroring 57,645 4,45 35,0%
Theoretical Maximum Load 68,050 3,77 45,0%

Results demonstrate that vertical scale strategies — increasing served demand without
increasing infrastructure — can result in significant OpEx per order reductions, especially

through better utilization of fixed components such as salaries and facility rental.

The demand mirroring scenario presents itself as the most promising from a practical
perspective, offering a 35% reduction in OpEx per order (from USD 6,86 to USD 4,45)
through a viable business strategy. This reduction is achieved mainly through dilution
of fixed costs over a larger volume of orders, without need for additional infrastructure

investments.

The theoretical maximum load scenario, in turn, represents the theoretical minimum
limit of OpEx per order (USD 3,77), but assumes ideal operational conditions that may
be difficult to achieve in practice due to seasonal variations, need for safety margins, and

limitations in capacity to attract demand distributed uniformly over time.
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It is important to highlight that both scenarios maintain fixed OpEx components re-
lated to salaries, rental, amortization, and operational licenses, reflecting vertical scale
premise. In a long-term analysis, it would be possible to explore also horizontal expan-
sion (increasing number of droneports and drones) combined with vertical scale strategies,
potentially achieving even larger demand multipliers and additional OpEx per order re-
ductions through scale economies in components such as software, regulatory licensing,

and centralized management.

Detailed results of this exploratory analysis were exported to CSV files in notebook 10,

allowing transparency and reproducibility of calculations.

4.3 Model Validation and Limitations

Validation of the developed operational cost model is fundamental to guarantee that
obtained results are representative and can be compared with real market operations. This
section presents a comparative validation using the iFood Delivery Plan business model
as reference, in addition to discussing main assumed limitations and their implications for

presented results.

4.3.1 Validation with Reference Model (iFood Delivery Plan)

To validate results of the OpEx per order model developed for DaaS service, a com-
parative analysis was performed using as reference the business model of iFood Delivery
Plan, which offers food delivery service through partner deliverers (motoboys and cy-
clists). This choice is appropriate as it represents a real and consolidated case in the
Brazilian market, functioning as a demand centralizer for deliverers to make deliveries of

orders from restaurants registered on the platform.

The iFood Delivery Plan model presents characteristics that facilitate OpEx per order
estimation: commission rates and cost structure are public and well documented, the
model operates as a marketplace platform connecting restaurants and deliverers, cost
structure does not have strong scale/volume dependence once deliverers are autonomous
partners who register on the platform, and operational costs are essentially variable per

order (payment to deliverer and processing fees).

Estimation Methodology

Analysis was performed in notebook 12 — 12_motofrete_opex_comparison.ipynb —

using the same database of delivered orders analyzed in the drone model, totaling 23,335
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delivered orders. Methodology is based on official iFood rates, as documented in public

sourcesl .

iFood fee structure comprises the Basic Plan (Marketplace), with 12% commission
on order value when restaurant makes its own delivery; the Delivery Plan (Fullservice),
with 23% commission when iFood manages deliveries; the difference between plans of 11%
(23% - 12%) represents revenue destined to subsidize delivery service; an online payment
fee of 3,2% on orders paid via iFood; and a minimum fee for deliverer of R$ 7,50 for

motorcycles and cars.
OpEx per order calculation model:

For each order, OpEx was calculated as the sum of two main components. The first
is deliverer cost, represented by a variable delivery fee based on actual distance traveled

(Route Distance), calculated as:
Delivery fee = max (R$ 7,50, R$ 7,50 + 0,80 x Distance (km)) (4.12)

where base fee of R$ 7,50 corresponds to minimum guaranteed to deliverer and additional
R$ 0,80 per km reflects cost variation with distance traveled. This model was adjusted
so that mean fee results in approximately R$ 9,00, mean delivery value observed in the

market.

The second component is online payment fee of 3,2% of order value, assuming that

all orders are paid via iFood (conservative scenario that considers worst case for OpEx).

Therefore, total OpEx per order is given by:

OpEx per order = Deliverer cost + Online payment fee (4.13)

It is important to highlight that this model considers only direct operational costs
(payment to deliverer and payment processing fee), not including indirect costs such as
marketing, technology development, customer support, IT infrastructure, and overhead,
which would be part of total OpEx of a complete operation. This choice is intentional and
allows a more direct comparison with the drone model, which also considers only direct

operational costs related to delivery execution.

Analysis Results

Applying the described methodology to the base of 23,335 delivered orders, the fol-
lowing results were obtained: mean OpEx per order of R$ 13,48, median of R$ 12,91,
minimum of R$ 7,59, and maximum of R$ 32,55.

liFood rates available at: https://blog-parceiros.ifood.com.br/taxas-ifood/
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Mean composition of OpEx per order shows that mean delivery cost corresponds to
R$ 11,33 (84,0% of total OpEx), while mean payment fee corresponds to R$ 2,15 (16,0%
of total OpEx).

Converting to dollars using the same exchange rate adopted in the drone model (USD
1 = BRL 5), mean OpEx per order of the iFood Delivery Plan model is USD 2,70.

Comparison with Drone Model

Table 4.15 presents a consolidated comparison of OpEx per order between the drone

model and the reference model (iFood Delivery Plan).

TABLE 4.15 — OpEx per order comparison: drone model vs iFood Delivery Plan

Model/Scenario OpEx/Order (USD)
iFood Delivery Plan (reference) 2,70
Drones — Current Demand 6,36
Drones — Demand Mirroring 4,45
Drones — Theoretical Maximum Load 3,77

Results demonstrate that the drone model presents OpEx per order significantly su-
perior to the reference model (iFood) in the current demand scenario (USD 6,86 vs USD

2,70), representing a differential of USD 4,16 per order (154% more expensive).

However, through vertical scale strategies, the drone model approaches the reference
model. In the demand mirroring scenario, OpEx reduces to USD 4,45, still 65% superior
to the iFood model, but with absolute difference reduced to USD 1,75 per order. In the
theoretical maximum load scenario, OpEx reduces to USD 3,77, representing a difference
of only USD 1,07 per order (40% superior to the iFood model).

Comparison Limitations and Considerations

It is fundamental to recognize inherent limitations of this comparison, which result

from structural differences between business models.

Regarding business model differences, the iFood model operates as a marketplace
platform, connecting restaurants and autonomous deliverers, without need for investment
in own delivery infrastructure. In contrast, the drone model requires significant invest-
ment in infrastructure (drones, droneports, communication systems) and own operation
with specialized personnel. iFood model costs are essentially variable (payment per de-
livery performed), while the drone model has substantial fixed costs (salaries, rental,

amortization) that are diluted over order volume.
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Scalability presents significant differences between models. The iFood model has prac-
tically infinite scalability through addition of new partner deliverers, without need for
additional infrastructure investment. The drone model, in turn, has capacity limits de-
fined by installed infrastructure (number of drones and droneports), requiring additional

investment (CapEx) for expansion beyond theoretical maximum capacity.

Cost coverage considered in the analysis also presents particularities. iFood model
analysis considers only direct delivery and payment processing costs, not including indi-
rect costs such as marketing, technology development, customer support, and IT infras-
tructure. The drone model also considers only direct operational costs related to delivery

execution, maintaining comparison on similar bases.

Regarding volume dependence, the iFood model does not have strong scale depen-
dence, once deliverers are autonomous partners who register on the platform according
to demand. The drone model presents strong scale dependence due to substantial fixed
costs, requiring reaching high volumes to adequately dilute fixed costs and make OpEx

per order competitive.

Regarding service quality, the iFood model offers terrestrial deliveries with delivery
times typically superior to 30 minutes, subject to traffic conditions and deliverer availabil-
ity. The drone model offers aerial deliveries with 20-minute SLA, providing greater speed

and reliability, especially in routes where aerial route offers significant distance gains (high

DSR).

Finally, regarding economic viability, despite drone model OpEx per order being su-
perior to the iFood model, it is important to consider that the drone model offers a value
differential through delivery speed (20-minute SLA vs 30+ minutes) and operational reli-
ability independent of traffic conditions. This differential can justify a price premium that

compensates higher OpEx, especially for market segments that value speed and reliability.

Validation Conclusion Comparison with the iFood Delivery Plan model validates that
the developed cost model produces coherent and comparable results with real market
operations. Drone model OpEx per order (USD 6,86 in current scenario) is superior to
the reference model (USD 2,70), but through vertical scale strategies can be reduced to
close values (USD 3,77 in theoretical maximum load scenario). Observed difference is
explained by structural characteristics of models: iFood has essentially variable costs and
infinite scalability through autonomous partners, while the drone model has substantial
fixed costs that require high volumes for adequate dilution, but offers value differential
through superior speed and reliability. This validation confirms that the cost model is

well-founded and produces realistic results for economic viability analyses.
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4.3.2 Horizontal Scale Analysis

While the vertical scale analysis presented previously explores strategies to increase
served demand without expanding installed infrastructure, horizontal scale analysis in-
vestigates the scenario of geographic and market expansion to serve a significant fraction
of the total food delivery market of Sao José dos Campos, not only orders currently in-

termediated by the Brendi platform.

This analysis is fundamental to understand market potential and establish bases for
future evaluations of economic viability of a full-scale operation, where the DaaS service
would serve not only current partner restaurants, but all potential food delivery demand

in the city.

It is important to highlight that, at this stage, the focus is to establish context and
estimate market potential through calculation of current and maximum plausible market
share. Infrastructure sizing necessary to serve expanded demand and OpEx and ROI

analysis in the horizontal scale scenario will be presented in subsequent analyses.

Current Market Share and Potential Demand

Current simulation considers only orders intermediated by the Brendi platform in the
analyzed period. As presented in notebook 14 — 14_market_share_analysis.ipynb —,
analysis of historical data of 3 months (90 days, from June to August 2025) resulted in
23,335 delivered orders, which when projected annually equate to approximately 94,636

orders per year.

To estimate the total food delivery market in Sao José dos Campos, a methodology
based on official national data from iFood(IFOOD, 2025; IFOOD; IPEC, 2024) was used.
iFood intermediated 120 million orders per month in 2025, totaling 1,44 billion orders per
year(IFOOD, 2025). Ipsos-Ipec Research indicates that iFood has 25,7% market share
in the Brazilian delivery market in 2024(IFOOD; IPEC, 2024). From these data, it is
calculated that the total Brazilian market is approximately 5,6 billion orders per year.
Considering Brazilian population of 203,06 million inhabitants (IBGE 2024), a metric of

27,59 orders per inhabitant per year is obtained.

Applying this metric to Sao José dos Campos population — 697,428 inhabitants ac-
cording to IBGE 2024 estimates(ESTATISTICA, 2024) —, it is estimated that the total
food delivery market in the city is approximately 19,244,162 orders per year.

Comparing orders observed in current analysis (94,636 orders/year) with estimated
total market (19,244,162 orders/year), it is concluded that current analysis comprises
only 0,49% of the total delivery market of Sdo José dos Campos. This result reflects that

the Brendi platform is only one of several existing intermediation platforms in the market,
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competing with iFood, Rappi, Uber Eats, and other established platforms.

Maximum Plausible Market Share Estimate

Considering the DaaS service business model, which allows intermediating orders from
any restaurant without need for contractual exclusivity, it is possible to estimate a max-
imum plausible market share superior to current. Different from models that depend on
exclusive partnerships, the DaaS service can provide delivery support for all restaurants
in the city, regardless of where the order was originally made (iFood, Rappi, restaurant’s

own app, etc.), as long as delivery is requested to the DaaS service.

This flexible characteristic of the model allows potentially high market penetration,
limited mainly by operational factors such as geographic coverage of droneports, opera-

tional capacity (number of drones), and market acceptance.

To estimate maximum plausible market share, it is considered as reference that iFood,
Brazilian market leader, has 25,7% market share(IFOOD; IPEC, 2024). For an established
and successful DaaS operation in Sao José dos Campos, it is considered that a market
share of 20% of total market represents an ambitious but plausible scenario, reflecting

significant service penetration in the city.

Therefore, maximum plausible market share is estimated at 20% of total mar-
ket, resulting in potential demand of approximately 3,848,832 orders per year (20%
of 19,244,162 orders/year).

This market estimate will be fundamental for subsequent analyses that will evaluate
necessary infrastructure sizing (number of droneports and drones) to serve this expanded
demand, total OpEx and OpEx per order in the horizontal scale scenario, and economic
viability through ROI (return on investment) analysis, considering necessary CapEx and

projected cash flows.

Expansion Modeling: Cost Dilution Analysis up to 20% Market Share

To evaluate how market share expansion from 0,49% to 20% affects necessary in-
frastructure and cost dilution per order, an expansion simulation model was developed

presented in notebook 15 — 15_expansion_market_share.ipynb.

The model considers gradual market share expansion through increments of 1% at a
time, from current scenario (0,49%) to target market share (20%). For each market share

scenario, the model calculates:

e Infrastructure sizing: Minimum number of drones and droneports necessary to

serve expanded demand, using the M/M/c queueing model with 20-minute SLA
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and respecting physical limit of 15 drones per droneport

e Human resources: Operators and technicians necessary according to operation scale
(minimum of 4 operators and 2 technicians up to 50 drones, scaling with 0,08 oper-

ators/drone and 0,04 technicians/drone above this limit)

e Batteries: Total batteries necessary considering 3 batteries per drone to guarantee

continuous operational availability

e CapEx: Investments in fixed infrastructure (droneport structure, charging stations,

communication) and variable (drones, batteries, safety equipment, training)

e OpEx: Annual operational costs fixed (rental, regulatory licenses) and variable (en-

ergy, maintenance, battery replacement, salaries, insurance)

Demand distribution among droneports maintains uniform proportions, adjusting dy-

namically as demand grows and new droneports are added when capacity limit is reached.

Figure 4.37 presents a consolidated view of expansion results, showing evolution of
infrastructure (drones and droneports), total costs (CapEx and OpEx), and cost dilution

per order (CapEx and OpEx per order) as a function of market share.

Results demonstrate that market share expansion generates significant dilution of costs
per order due to greater operational scale. Table 4.16 presents a detailed comparison of
four representative scenarios: current market share (0,49%), intermediate (5,49% and
10,49%), and target (20,49%).

Results evidence significant impacts of expansion on cost structure. Expansion from
0,49% to 20,49% market share — corresponding to a demand increase of approximately
41,8 times — requires proportionally smaller infrastructure increase: 1,8 times more
droneports (from 4 to 7) and 8,8 times more drones (from 12 to 105). This mismatch
between demand growth and infrastructure reflects dilution of fixed costs and operational

efficiency gains at scale.

The most significant effect of expansion is cost dilution per order: CapEx per order
reduces from USD 11,29 to USD 1,79 (reduction of 84,2%), while OpEx per order reduces
from USD 6,26 to USD 0,67 (reduction of 89,3%). This dramatic dilution demonstrates
the strong scale effect of the operational model, where substantial fixed costs (droneport
infrastructure, communication systems, minimum personnel) are distributed over a much

larger volume of orders.

Mean system utilization increases significantly with expansion, evolving from 17,1% in
current scenario to 77,1% at 5,49% market share, reaching 90,6% at 10,49% and stabilizing
at 87,7% in the 20,49% scenario. This utilization increase reflects better utilization of

installed capacity and contributes to cost per order reduction through fixed cost dilution.
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FIGURE 4.37 — Market share expansion modeling: infrastructure and cost dilution analysis. Charts show
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TABLE 4.16 — Market share expansion scenario comparison: infrastructure, total costs, and dilution per
order

Metric 0,49%  5,49% 10,49% 20,49%
Demand (orders/year) 37,404 419,077 800,751 1,564,098
Multiplier 1,0x 11,2x 21,4x 41,8x
Infrastructure
Droneports 4 4 4 7
Drones 12 32 52 105
Batteries 36 96 156 315
Operators 4 4 5) 9
Technicians 2 2 3 5
Total Costs
Total CapEx (USD) 422,200 919,200 1,418,200 2,798,250

Total Annual OpEx (USD) 233,982 370,982 553,883 1,042,034

Dilution per Order

CapEx per Order (USD) 11,29 2,19 1,77 1,79
OpEx per Order (USD) 6,26 0,89 0,69 0,67
Mean Utilization (%) 17,1 77,1 90,6 87,7

This analysis validates that horizontal expansion to maximum plausible market share
of 20% is viable from an operational perspective and presents significant cost dilution
benefits. Results indicate that reaching high volumes is fundamental to make the economic
model competitive, substantially reducing both CapEx and OpEx per order through scale
effect.

4.3.3 Temporal Growth Modeling: Financial Evolution over 5 Years

While the horizontal expansion analysis presented previously explores static scenarios
of different market share levels, it is fundamental to understand how temporal business
evolution impacts operation financial viability. In this way, an exponential growth model
was developed that projects market share evolution over 5 years, starting from current

scenario (0,49%) until reaching maximum plausible market share of 20%.

This analysis, performed in notebook 16 — 16_crescimento_exponencial_5_anos.ipynb
—, allows evaluating how operational costs (OpEx), incremental investments (incremental
CapEx), and revenues evolve over time, providing insights on operation financial health
year by year and identifying indicators such as break-even point, return on investment

(ROI), and operating margin.
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Exponential Growth Model (CAGR)

To model market share growth from 0,49% to 20% in 5 years, an exponential growth
model based on compound annual growth rate (CAGR) was used. CAGR represents the
constant annual growth rate that would be necessary to achieve final value from initial

value over the considered period.

CAGR calculation formula is:

1
Final Value  Pericds
Initial Value —1 4.14
Initial Value) (4.14)

CAGR = <

Applying this formula for market share growth from 0,49% to 20% in 5 years, a CAGR
of 109,97% per year is obtained, representing a very high but feasible growth rate in the

context of an accelerated expansion operation in a growing market.

Table 4.17 presents evolution of market share, annual demand, and multiplier relative

to initial scenario over the 5 years.

TABLE 4.17 — Temporal evolution of market share and demand over 5 years

Year Market Share (%) Annual Demand Multiplier

0 0,49 94,296 1,00x
1 1,03 197,998 2,10x
2 2,16 415,747 4,41x
3 4,54 872,962 9,26x
4 9,52 1,832,999 19,44x
) 20,00 3,848,832 40,82x

Evolution shows that, in year 5, annual demand increases to 3,848,832 orders, repre-
senting growth of approximately 40,8 times relative to initial scenario. This accelerated
growth reflects need for significant expansion of operational infrastructure, as discussed

below.

Infrastructure and Cost Evolution

For each year of the projection, the model calculates necessary sizing (number of
drones, droneports, batteries, and human resources) using the same methodology pre-
sented in Section 4.3.2, based on the M/M/c queueing model with 20-minute SLA.

The model considers that incremental CapEx corresponds only to investments in new
resources necessary in each year, not to total accumulated investment. This approach is

more realistic for cash flow analysis, as it represents effective disbursements of each year.

Annual OpEx is calculated based on scale of each year, including both fixed costs
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(which increase as new droneports are installed) and variable costs (which scale with

volume of orders processed).

Revenue Model

Revenue model considers a mean delivery price based on iFood reference model, as
presented in Section 4.3.1, with addition of a premium that reflects value differential

offered by drone delivery service (greater speed and reliability).

According to notebook 12 analysis, mean iFood delivery cost is R$ 11,33 per order.
The model adds a premium of R$ 4,00 per order, resulting in a mean delivery price of
R$ 15,33 (USD 3,07, considering exchange rate of USD 1 = BRL 5).

This premium is justified by value differential offered: deliveries with 20-minute SLA
(vs. 30+ minutes of traditional model), lower dependence on traffic conditions, and greater
operational reliability, characteristics that can be especially valued by market segments

that prioritize speed and punctuality.

Annual revenue for each year is calculated multiplying mean delivery price by projected

annual demand.

Financial Evolution and Indicators

Table 4.18 presents detailed financial evolution over the 5 years, including revenue,
OpEx, incremental CapEx, free cash flow (FCF), operating result (profit/loss), and oper-

ating margin.

TABLE 4.18 — Detailed financial evolution over 5 years

Year MS (%) Annual Revenue OpEx CapEx FCF Op. Margin

(USD) (BRL)  (USD)  (USD)  (USD) (%)
0 0,49 289,161 1,445,807 244,324 422,200  -377,362 15,51
1 1,03 607,166 3,035,828 277,169 99400 230,596 54,35
2 2,16 1,274,894 6,374,467 370,904 397,600 506,390 70,91
3 4,54 2,676,953 13,384,763 593,386 697,800 1,385,767 77,83
4 952 5620921 28,104,604 1,175,525 1,616,000 2,829,396 79,09
5 20,00 11,802,507 59,012,534 2,488,211 3,584,750 5,729,545 78,92

Results evidence important patterns in operation financial evolution. In Year 0 (cur-
rent scenario), operation presents positive operating result (profit of USD 44,838), but
free cash flow is negative (USD -377,362) due to high initial CapEx investment (USD
422,200). Initial operating margin is 15,51%, indicating that the model is viable from an

operational perspective even at small scale.

In Year 1, with market share of 1,03%, FCF becomes positive (USD 230,596), but
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accumulated FCF is still negative (USD -146,766), reflecting that initial investment has

not yet been fully recovered.

Break-even point is reached in Year 2, when accumulated FCF reaches USD 359,624,
indicating that all investments made until then were recovered through positive cash flows
from previous years. From this point, operation generates positive return on invested

capital.

Subsequent evolution shows accelerated growth: in Year 5, with market share of
20% and demand of 3,848,832 orders/year, annual revenue reaches USD 11,802,507 (BRL
59,012,534), while OpEx is USD 2,488,211, resulting in operating result of USD 9,314,295
and operating margin of 78,92%.

Total accumulated CapEx over the 5 years is USD 6,817,750, while total accumulated
FCF is USD 10,304,332, resulting in an accumulated ROI of 151,14% after 5 years.
This high ROI demonstrates financial viability of the model when target market share
is reached, reflecting the strong scale effect that dilutes fixed costs over a much larger

volume of orders.

Figure 4.38 presents a consolidated view of financial evolution, showing main indicators
over the 5 years in eight complementary charts: market share evolution, demand growth,
revenue evolution, OpEx and incremental CapEx, annual FCF, accumulated FCF (with

break-even line), operating margin, and infrastructure evolution (drones and droneports).

Considerations on Pricing and Economic Viability

Adopted pricing model considers a mean delivery price of R$ 15,33 per order, resulting
from combination of iFood base cost (R$ 11,33) with a premium of R$ 4,00. This pricing
strategy was developed to balance two fundamental objectives: maintain competitiveness

in the short term and guarantee economic viability in the long term.

In the short term (Year 0 and beginning of Year 1), the model may present negative
cash flows due to high initial infrastructure investments. However, even in this initial
period, operation presents positive operating result (revenue exceeds OpEx), demonstrat-
ing that the model is viable from an operational perspective and that adopted pricing is

compatible with operational costs even at small scale.

In the long term (from Year 2), the model becomes increasingly profitable, with oper-
ating margin evolving from 15,51% in Year 0 to approximately 79% from Year 4, demon-
strating economic viability of the model when adequate scale is reached. Break-even
point is reached in Year 2, when accumulated FCF becomes positive, indicating complete

recovery of initial investments.

It is important to highlight that, in practice, delivery costs are partitioned between
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restaurant and consumer, according to common model in the food delivery market. A
portion of delivery fee is paid directly by consumer (as visible delivery fee in the app),
while another portion may be incorporated into product prices by restaurant or charged
through commission fees on order. This partitioning allows flexibility in pricing strategy,
enabling adjustments for different market segments and different business models (e.g.,

monthly unlimited deliveries plan vs. per-delivery charge).

The R$ 4,00 premium over the iFood model can be distributed between restaurant
and consumer proportionally, maintaining service competitiveness while guaranteeing eco-
nomic viability through sufficient revenue to cover operational costs and generate adequate

return on invested capital.

This temporal analysis validates that the DaaS business model presents economic vi-
ability when considered an adequate planning horizon (5 years), as long as it is possible
to achieve projected market share growth through marketing strategies, restaurant part-
nerships, and market acceptance of drone delivery service (see assumptions spreadsheet

in Appendix A).



5 Conclusion

This chapter presents the conclusion of the work, synthesizing the main results ob-
tained, evaluating the research hypothesis formulated in the introduction, highlighting the

contributions of the study and pointing out limitations and directions for future work.

5.1 Synthesis of Main Results

This work developed an integrated analysis of logistical, energetic and economic-
financial viability of a Drone-as-a-Service (DaaS) service for food deliveries in the city
of Sao José dos Campos, using real data from the Brendi platform. The results obtained
demonstrate both technical viability and economic challenges for implementation of the

proposed model.

Logistical Results

Processing of the original dataset of 1,048,575 orders resulted in a final set of 23335
valid orders after geographic filtering and outlier removal, representing successfully de-
livered orders in the Sao José dos Campos region. Analysis of the Distance-Shortening
Rate (DSR) revealed an average value of 0.3524, indicating that the air mode offers po-
tential reduction of approximately 35% in distance traveled relative to the ground mode,

validating the hypothesis of significant geometric gain for urban deliveries.

Optimal location of droneports through the K-means algorithm resulted in 4 strategic
points distributed in the region, capable of covering 85.48% of demand (19,947 orders)
within the operational radius of 5km. Fleet sizing through the M/M/c queue model
determined the need for 12 drones distributed among the 4 droneports, guaranteeing
Service Level Agreement (SLA) of 20 minutes for 95% of orders. This result confirms the

operational viability of the proposed model from a logistical perspective.
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Economic-Financial Results

The economic-financial analysis revealed a total initial investment (CapEx) of USD
421,200 (BRL 2,106,000), with drone acquisition responsible for 56.98% of total invest-
ment. Annual operational costs (OpEx) totaled USD 256,772 (BRL 1,283,744), resulting
in OpEx per order of USD 6.86 in the current demand scenario (37,404 orders/year).

The exploratory analysis of vertical scale demonstrated that strategies for better uti-
lization of installed infrastructure can significantly reduce OpEx per order: through de-
mand mirroring (temporal redistribution), OpEx reduces to USD 4.45 (35% reduction),
while at theoretical maximum load OpEx reaches USD 3.77 (45% reduction). Compari-
son with the reference model (iFood Delivery Plan) revealed that the drone model’s OpEx
per order is higher in the current scenario (USD 6.86 vs USD 2.70), but approaches the

ground model with scale strategies.

The horizontal expansion analysis up to 20% market share showed operational viability
and significant cost dilution benefits. The temporal growth model projected for 5 years
indicated break-even in Year 2, with accumulated ROI of 151.14% in Year 5 and operating
margin evolving from 15.51% (Year 0) to approximately 79% (Years 4-5), demonstrating

economic viability when adequate scale is reached.

5.2 Response to Hypothesis and Research Problem

The hypothesis formulated in Chapter 1 established that “a DaaS service dedicated to
meal delivery is logistically viable — capable of meeting a minimum Service Level Agree-
ment (SLA) of 20 minutes and reducing total delivery time compared to the traditional
motorcycle-based model — and economically viable — with operational costs comparable
to or lower than motorcycle delivery, considering the necessary infrastructure, requlatory

costs and the operation scale of the Brendi platform”.

Logistical Viability Assessment

The logistical viability hypothesis was confirmed. The M/M/c queue model demon-
strated that it is possible to meet the 20-minute SLA for 95% of orders with a fleet of
12 drones distributed in 4 strategically positioned droneports. DSR analysis revealed an
average geometric gain of 35% in distance traveled, validating the potential for delivery
time reduction relative to the ground mode. Coverage of 85.48% of demand within the
5km operational radius confirms that the proposed infrastructure is adequate to serve a

significant portion of the market.
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Economic Viability Assessment

The economic viability hypothesis was partially confirmed. In the current demand
scenario, the drone model’s OpEx per order (USD 6.86) is significantly higher than the
motorcycle delivery model (USD 2.70), representing a 154% differential. However, through
vertical scale strategies — especially demand mirroring and operation at theoretical maxi-
mum load — OpEx per order reduces to USD 4.45 and USD 3.77, respectively, approaching
the ground model.

It is important to highlight that the drone model offers a value differential through
delivery speed (20-minute SLA vs 30+ minutes of the traditional model) and operational
reliability independent of traffic conditions. This differential can justify a price premium
that compensates for the higher OpEx, especially for market segments that value speed
and punctuality. The temporal growth analysis demonstrated that, with adequate market
share expansion, the model presents full economic viability, with break-even in Year 2 and
accumulated ROI of 151.14% in Year 5.

Response to Research Problem

The research problem formulated: “Would it be logistically and economically viable
to implement, in a Brazilian city, a Drone-as-a-Service (DaaS) service dedicated to meal
delivery, taking as a pilot phase the order portfolio already intermediat ed by the Brendi
platform?”

The answer is: Yes, logistically viable; economically viable with reservations. Logis-
tical viability was confirmed through demonstration of operational capacity to meet the
proposed SLA with the sized infrastructure. Economic viability requires adequate scale
to dilute substantial fixed costs and justify the initial investment. Full economic viability
depends on market share growth and operational optimization strategies, as demonstrated
by the temporal growth analysis. The model presents potential for positive return when
adequate scale is reached, but requires significant initial investment and demand capture

strategies to achieve profitability.

5.3 Contributions of the Work

This work contributes to the literature and practice of drone deliveries in multiple
ways, standing out for the integration of different analysis dimensions and adaptation to

the Brazilian context.
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Methodological Contributions

The work integrates logistical (VRP-D), energetic and economic-financial modeling in
a unique framework for DaaS viability evaluation, allowing holistic analysis that captures
interactions between demand, infrastructure, climate and costs. The adaptation of con-
solidated methodologies — DSR, K-means, M/M /¢ — to the Brazilian regulatory context
(RBAC-E 94, ICA 100-40) demonstrates how established techniques can be applied con-
sidering specific restrictions of each country. The development of a complete pipeline from
real data to viability metrics offers a reproducible methodology that can be adapted to

other cities and contexts.

Empirical Contributions

The use of real data from the Brendi platform — 23,335 successfully delivered orders
— captures specific patterns of the Brazilian market, including geographic distribution
of restaurants and customers, temporal demand patterns and characteristics of the urban
road network. The specific analysis for Sao José dos Campos incorporates vehicle flow data
and local meteorological conditions (ERA5, INMET), providing contextualized results
that reflect Brazilian operational reality. Validation with reference model (iFood Delivery
Plan) and comparison with international commercial operators (Speedbird Aero, Wing,

Meituan) ensures that results are realistic and comparable with real operations.

Regulatory Contributions

The complete incorporation of RBAC-E 94 and ICA 100-40 restrictions into the models
— including maximum takeoff weight, operational ceiling, mandatory safety equipment,
SARPAS-NG flight plans and RC-RETA insurance — provides a viability analysis that
fully reflects the legal compliance cost. The analysis of regulatory cost impact on eco-
nomic viability demonstrates how these restrictions affect model competitiveness, offering

insights for regulators and operators on the impact of different regulatory policies.

Practical Contributions

The quantitative CapEx/OpEx comparative analysis with motorcycle delivery estab-
lishes objective operational viability criteria, allowing stakeholders to evaluate the model
based on clear and comparable metrics. The identification of scale strategies (vertical
and horizontal) for economic viability offers practical paths for operators to achieve prof-

itability, highlighting the importance of demand growth and operational optimization.
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The temporal growth projection with financial indicators (break-even, ROI, operating

margin) provides a quantitative basis for investment decisions and strategic planning.

5.4 Limitations and Future Work

It is fundamental to recognize the limitations inherent to this study and identify di-

rections for future research that can refine or extend the presented results.

Recognized Limitations

Cost estimates: The drone acquisition costs used in the analysis are estimates based
on benchmarking with similar commercial equipment, not corresponding to official public
values. The Keeta G-4 drones used as reference are commercialized through direct sale and
not available on the open market, requiring estimates that may differ from real acquisition

values.

Queue model: The M/M/c model is adopted as a long-term equilibrium approxima-
tion, recognizing that SARPAS-NG operational windows and hourly peaks may introduce
non-Poissonian behavior. The need for flight plans with 24-hour advance notice may cre-
ate arrival patterns that differ from the assumed Poisson process, potentially impacting

waiting times and fleet sizing.

Geographic generalization: The analysis was focused exclusively on the city of Sao
José dos Campos, a medium-sized city with specific characteristics of road network, pop-
ulation density and demand patterns. Generalization of results to other Brazilian cities
— especially metropolises such as Sao Paulo and Rio de Janeiro — requires additional

validation considering different urban, regulatory and market characteristics.

Meteorological scenario: A conservative scenario of meteorological conditions was
adopted to ensure pessimistic analysis, which may underestimate real operational avail-
ability. The analysis of three scenarios (conservative, moderate and aggressive) offers
variability, but the choice of the conservative scenario may not reflect average operational

conditions throughout the year.

Pricing model: The revenue model assumes a fixed premium of R$ 4.00 over iFood’s
base cost, not exploring dynamic pricing strategies, market segmentation or different
business models (e.g., monthly unlimited delivery plan vs per-delivery charge). Consumer

willingness to pay for drone delivery service was not empirically investigated.

Safety protocols and physical delivery operationalization: The model assumes that

the drone arrives at the customer and delivery is complete, without considering actual
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procedures of drone descent, physical package delivery to the customer, safety protocols
on landing, customer interaction, procedures in case of customer absence, and other op-
erational aspects of the final delivery stage. This simplification may impact both delivery
times and operational costs, especially if there is need for support personnel on site or
automated delivery systems (retractable cables, secure compartments, dedicated delivery
stations). The analysis did not consider different physical delivery modalities — such
as direct delivery to customer, delivery in secure compartment, or hybrid delivery with
motorcycle completing the last meters — which may have significant implications for

operational and economic viability.

Future Work

Validation in other cities: Extending the analysis to other Brazilian cities with differ-
ent urban characteristics — especially metropolises such as Sao Paulo, Rio de Janeiro and
Belo Horizonte — would allow validating generalization of results and identifying specific

factors of each context that impact model viability.

Sensitivity analysis: Conducting more detailed sensitivity analysis of cost parameters
— especially drone acquisition costs, electricity tariffs, insurance premiums and infrastruc-
ture costs — would allow identifying which components most impact economic viability

and establishing critical value ranges.

Advanced queue models: Incorporating more sophisticated queue models that cap-
ture non-Poissonian behavior resulting from SARPAS-NG operational windows, seasonal
demand patterns and intradaily variations would allow more precise fleet sizing and better

waiting time estimation.

Risk analysis: Developing risk analysis and probabilistic scenarios for financial projec-
tions — incorporating uncertainties in demand, operational costs, meteorological condi-
tions and market acceptance — would offer a more robust viability evaluation considering

variability and risks.

Pricing strategies: Investigating dynamic pricing strategies and market segmentation
— including consumer willingness to pay analysis, demand elasticity and different business

models — would allow optimizing revenues and improving model economic viability.

Environmental impact: Conducting comparative environmental impact analysis —
especially COy emissions and other pollutants — between the drone model and the mo-
torcycle delivery model, considering complete equipment life cycle and energy sources,

would offer an additional dimension of model sustainability evaluation.

Route optimization: Integrating machine learning models for real-time route opti-

mization — considering dynamic meteorological conditions, traffic patterns and drone
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availability — would allow better utilization of installed capacity and additional opera-

tional cost reduction.

Consumer acceptance: Conducting empirical study of consumer acceptance and will-
ingness to pay for drone delivery service — through surveys, focus groups or choice ex-

periments — would provide fundamental data for pricing and marketing strategies.

Physical delivery protocols: Developing detailed analysis of different physical deliv-
ery modalities — including direct delivery to customer, automated delivery systems, and
hybrid models — considering operational costs, delivery times, safety requirements and
customer experience, would allow identifying the most viable modality for different con-

texts.

Network analysis: Extending the analysis to multiple cities simultaneously, consid-
ering operational synergies, infrastructure sharing and economies of scale in centralized
management, would allow evaluating network operation viability and geographic expan-

sion strategies.

In summary, this work demonstrated that a Drone-as-a-Service for food deliveries
is logistically viable and presents potential for economic viability when adequate scale
strategies and market share growth are considered. The results offer a solid quantitative
basis for investment decisions and strategic planning, while identifying paths for future

research that can refine and extend the presented analyses.
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