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Resumo

Métodos educacionais tradicionais frequentemente encontram dificuldades para transmitir
conceitos complexos, espaciais e dinamicos como os da mecanica orbital. A recente con-
vergéncia entre a Realidade Mista (RM) de consumo e os sofisticados agentes de Inteligén-
cia Artificial (IA) Generativa apresenta uma oportunidade para criar um novo paradigma
de interfaces de aprendizagem intuitivas e experienciais. Este trabalho detalha o projeto,
desenvolvimento e demonstracao de uma plataforma educacional interativa para a explo-
racao dos principios da mecanica orbital. O objetivo principal do sistema é conectar a
teoria de leis fisicas abstratas a compreensao intuitiva, permitindo que os usudrios apren-
dam por meio da interacao corporificada. A metodologia é centrada em uma arquitetura
modular que integra dois componentes principais: (1) um “cérebro” agente generativo,
impulsionado por Modelos de Linguagem Abrangentes, que interpreta comandos em lin-
guagem natural e atua como um guia educacional especializado; e (2) um "mundo” de
simulagao em tempo real e visualizacao imersiva em realidade mista, construido no motor
Unity para o Meta Quest 3, que renderiza trajetérias orbitais fisicamente precisas em
um espago tridimensional onde os usudrios vivenciam a mecanica orbital de dentro. A
plataforma facilita um ciclo de interacao multimodal continuo, onde os comandos de voz
do usudrio sao capturados, processados pelo agente para alterar os parametros da simu-
lagao e refletidos na visualizagao imersiva em RV com feedback auditivo conversacional.
Este trabalho entrega um protétipo funcional que demonstra uma nova abordagem para
a educagao cientifica, transformando dados abstratos em uma experiéncia manipulével
e conversacional para promover uma aprendizagem exploratoria e profundamente enga-
jadora. A plataforma é disponibilizada como software de codigo aberto para permitir

validagao, adaptacao e extensao pela comunidade para diversos contextos educacionais.



Abstract

Traditional educational methods often struggle to convey complex, spatial, and dynamic
concepts such as those found in orbital mechanics. The recent convergence of consumer-
grade Mixed Reality (MR) and sophisticated Generative Al agents presents an opportunity
to create a new paradigm for intuitive and experiential learning interfaces. This paper de-
tails the design, development, and demonstration of an interactive educational platform
for exploring the principles of orbital mechanics. The system’s primary objective is to
bridge the gap between abstract physical laws and intuitive comprehension by enabling
users to learn through embodied interaction. The methodology is centered on a modular
architecture that integrates two core components: (1) a generative agent "brain,” powered
by Large Language Models, which interprets natural language commands and acts as an
expert educational guide; and (2) a real-time simulation and immersive mixed reality visu-
alization "world,” built in the Unity engine for the Meta Quest 3, which renders physically
accurate orbital trajectories in a three-dimensional space where users experience orbital
mechanics from within. The platform facilitates a seamless multimodal interaction loop
where a user’s voice commands are captured, processed by the agent to alter simulation
parameters, and reflected in the immersive VR visualization with conversational auditory
feedback. This work delivers a functional prototype that demonstrates a novel approach
to science education, transforming abstract data into a manipulable, conversational ex-
perience to foster exploratory and deeply engaging learning. The platform is released
as open-source software to enable community validation, adaptation, and extension for

diverse educational contexts.
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1 Introduction

1.1 Organisation

This work is organised into five main chapters, each addressing a distinct aspect of

the project. The breakdown is as follows:

e Chapter 1: Introduction. This chapter sets the stage for the research and develop-

ment.

— Motivation (§1.2): Presents the core argument that the convergence of im-
mersive reality technologies—particularly Virtual Reality—and generative Al

enables a new, more intuitive paradigm for educational interfaces.

— Objectives (§1.3): Defines the project’s specific, actionable goals, centered on
the development and demonstration of an interactive, agent-guided simulation

platform.

e Chapter 2: Literature Review. This chapter provides the theoretical and technical

foundation for the work by reviewing three key domains.

— Augmented and Virtual Reality (§2.1): Reviews the evolution of immersive
hardware and software ecosystems and establishes their pedagogical value for

spatial learning.

— Generative Agents (§2.2): Defines the architecture of modern LLM-powered
agents, detailing their ability to use planning, memory, and external tools to

reason through and execute complex tasks.

— Orbital Mechanics (§2.3): Outlines the fundamental physics of celestial mo-
tion, including the two-body problem, classical orbital elements, and impulsive

maneuvers, which form the mathematical basis for the simulation.

e Chapter 3: Methodology. This chapter details the design philosophy, system archi-

tecture, and technical implementation approach.
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— Design Philosophy and Approach (§3.1): Establishes the iterative, prototype-
driven development methodology guided by principles of modularity and ex-

ploratory research into novel human-computer interaction paradigms.

— System Architecture and Data Flow (§3.2): Describes the end-to-end interac-
tion cycle, illustrating how user voice input flows through speech recognition,
agent reasoning, tool execution, physics simulation, and VR rendering in a

continuous loop.

— Mized Reality Design Rationale (§3.3): Explains the pedagogical reasoning for
focusing exclusively on immersive VR for orbital mechanics education, with
discussion of why AR passthrough was not implemented and remains future
work, addressing the mismatch between cosmic-scale phenomena and room-

scale spatial contexts.

— Technical Implementation (§3.4): Summarizes the integration of conversational
AT (OpenAl GPT-4.1, ElevenLabs voice synthesis), Unity 3D physics simula-

tion, and Meta Quest 3 deployment with character-driven specialist personas.

— Core Module Implementation (§3.7): Details the four primary subsystems—Agent
System, Orbital Physics Simulation, Voice Integration Pipeline, and Virtual
Reality Environment—with emphasis on their educational design rationale and

how each component supports the learning objectives.

— Development and Version Control (§3.5): Documents the systematic devel-
opment practices using GitHub for version control, branching strategies, and

iterative refinement cycles.

— Validation Strategy (§3.6): Outlines the approach for validating system func-
tionality through complete interaction scenarios, with implementation made

available for independent verification and replication studies.

e Chapter 4: Results and Demonstration. This chapter demonstrates the complete
functional platform through an actual user learning journey, validating all six specific

objectives through integrated scenarios.

— FEntering the Orbital Environment (§4.1): Documents the initial Hub arrival
experience, including the introductory cutscene, spatial orientation in VR, and

first interaction with Mission Control.

— Learning Through Mission Specialist Dialogue: The ISS Circular Orbit (§4.2):
Demonstrates the complete pedagogical cycle of conceptual question, specialist
consultation, hands-on orbit creation, VR observation, and time-accelerated

visualization using the ISS mission as a concrete example.
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— FEzploring Orbital Geometry: Elliptical Orbits and Eccentricity (§4.3): Shows
iterative orbit refinement through Hubble specialist consultation, demonstrat-
ing how learners progress from circular to elliptical geometries and observe

speed variation through immersive visualization.

— Conceptual Extension: Escape Trajectories and Mission Context (§4.4): Illus-
trates theoretical dialogue mode through Voyager specialist consultation on
interplanetary escape trajectories, validating the platform’s flexibility to sup-

port conceptual learning without requiring hands-on manipulation.

— System Integration and Technical Validation (§4.5): Presents quantitative per-
formance metrics (tool execution reliability, voice pipeline latency, VR render-
ing stability, physics accuracy validation) and complete system demonstration

evidence through continuous video recording.

— Implementation Awvailability (§4.6): Documents the publicly available imple-
mentation, including source code organization, deployment procedures, and

reproducibility guidelines for verification studies.

e Chapter 5: Conclusion. This chapter synthesizes the thesis contribution, reflecting
on what was demonstrated, what insights emerged about spatial educational inter-
faces, what limitations bound the validation scope, what research trajectories this

work enables, and whether the central feasibility question has been answered.

1.2 Motivation

For decades, popular media and speculative fiction have envisioned futuristic interfaces
for exploration and control, from holographic command centers to immersive planetary
navigation tools. Films such as Minority Report (2002) and Iron Man (2008) popularized
visions of humans interacting with vast information systems through gestures, speech, and
spatial manipulation. These visions were once confined to science fiction, but today, the
convergence of immersive reality technologies—particularly Virtual Reality (VR)—and
Artificial Intelligence (Al) is bringing such interfaces into the realm of technological fea-
sibility.

In particular, the past few years have seen rapid advances in consumer-grade immersive
hardware, particularly in virtual reality. Devices like the Meta Quest and Apple Vision
Pro represent significant milestones in accessibility and visual fidelity, enabling immersive
environments that are no longer confined to laboratory research or elite applications.
The implications for interface design, interaction paradigms, and knowledge acquisition
are profound. VR is no longer a speculative technology; it is present, evolving, and

increasingly democratized.
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Concurrently, the emergence of generative Al and language-based agents has intro-
duced a paradigm shift in how humans interact with complex systems. Large Language
Models (LLMs), such as those powering conversational agents, can now interpret natural
language, generate multimodal content, and coordinate sequences of actions across soft-
ware environments. This represents a departure from deterministic, rule-based systems
toward stochastic and adaptive workflows, where agents interpret intention, negotiate

uncertainty, and build dynamically responsive experiences.

When these technologies—immersive VR and generative agents—are combined, they
form the foundation for a new kind of interface: one that is spatial, conversational, and
adaptive. Such interfaces do not rely on code or static menus; they respond to voice,
gesture, and embodied input. They transform abstract data into manipulable space, and

procedural complexity into natural dialogue.

This is particularly relevant in the domain of education. Traditional educational sys-
tems remain bound to text, diagrams, and symbolic representation. While these tools
are powerful, they often fall short when applied to fields that are inherently spatial, dy-
namic, or non-intuitive. Orbital mechanics, for example, involves motion through three-
dimensional space governed by non-linear physical laws. Launch trajectories, gravitational

slingshots, inclination changes, these are difficult to visualize and even harder to intuit.

In this context, immersive simulation has the potential to become more than a visual
aid: it may serve as a cognitive bridge. A learner could speak a question and witness a
launch trajectory materialize in their physical space. They could observe orbits evolve in
real time, ask about inclinations or transfer windows, and receive explanations grounded
in physics. Education could become experiential, a process of exploration rather than
instruction—though whether this approach improves learning outcomes compared to tra-

ditional methods remains an open empirical question.

Moreover, generative agents provide a layer of accessibility that is historically absent
in technical domains. They can guide the learner, interpret vague queries, correct mis-
conceptions, and explain phenomena in adaptive ways. They act as intelligent mediators

between curiosity and formal knowledge.

Given these technological conditions—the maturity of consumer VR, the rise of stochas-
tic AT agents, and the persistent limitations of traditional educational media—this project
is motivated by a clear opportunity: to construct a new type of educational experience.
One that is not constrained by interface conventions, disciplinary jargon, or static presen-

tation. One that invites the user to learn by seeing, asking, moving, and listening.

The convergence of embodied interaction and generative intelligence allows for a sim-
ulation system that is technically rigorous and experientially engaging. It may enable a

form of learning in which the abstract becomes tangible, the distant becomes near, and
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the user is placed at the center of the scientific process. This project emerges from the
hypothesis that space education, and scientific education more broadly, may benefit from
evolving to meet the possibilities of our time—a hypothesis this work seeks to demonstrate

through technical feasibility rather than pedagogical validation.

1.3 Objectives

General Objective

To develop an interactive, agent-guided simulation platform that enables users to ex-
plore and understand orbital mechanics through embodied interaction, combining natural

language dialogue and real-time virtual reality visualizations.

Specific Objectives

1. Design and implement a simulation environment capable of rendering orbital trajec-
tories in real time, grounded in physics-consistent models implementing Keplerian

two-body dynamics.

2. Integrate a generative agent capable of interpreting natural language input, trans-
lating it into simulation parameters, and guiding the user through explanations and

interactions.

3. Enable multimodal interaction by combining voice commands, spatial presence, and
mixed reality visual feedback (VR immersion with architectural support for future
AR passthrough extension) to create a seamless and intuitive user experience opti-

mized for learning orbital mechanics concepts.

4. Ensure that all components of the system, simulation and agent, function coherently

and communicate reliably in real time.

5. Create a system architecture that is modular and extensible, allowing for future

expansion to other celestial bodies, educational modules, or mission types.

6. Validate system functionality through complete interaction scenarios and provide
reproducible implementation documentation, enabling independent verification of

technical feasibility claims.



2 Literature Review

2.1 Augmented and Virtual Reality in Immersive Educa-

tional Simulation Systems

Augmented Reality (AR) and Virtual Reality (VR) are complementary immersive
technologies that enrich or replace a user’s perception of the world. AR overlays digital
content onto the real environment in real-time, allowing virtual objects to coexist with
physical surroundings (Billinghurst; Clark; Lee, 2015). In contrast, VR completely im-
merses the user in a fully synthetic, computer-generated environment, blocking out the
physical world. Milgram’s classic “Reality-Virtuality” continuum illustrates these as end-
points: AR lies near the real-world end (mixing virtual content with reality), whereas
VR occupies the extreme virtual end with an entirely simulated world (Milgram; Kishino,
1994). In essence, AR adds to the user’s real-world experience, while VR transposes the
user into an interactive virtual scene. Both technologies share common roots in decades
of research and development. The term augmented reality was first coined by Caudell and
Mizell (1992) in the context of assisting Boeing manufacturing with see-through displays
(Caudell; Mizell, 1992). A few years later, Azuma’s influential survey defined AR by
three key characteristics: combining real and virtual content, interactive operation in real
time, and accurate 3D registration of virtual objects in the physical world (Azuma, 1997;
Billinghurst; Clark; Lee, 2015). VR, meanwhile, has been long conceptualized as achiev-
ing presence — the feeling of “being there” in a virtual environment — by engaging multiple
senses with responsive 3D graphics and audio (Johnson-Glenberg, 2018). Modern defi-
nitions emphasize that VR provides immersive first-person experiences where users can
interact with simulated worlds as if they were real, inducing a strong sense of presence

and agency within the virtual scene.

2.1.1 Hardware Evolution:

AR and VR technologies have evolved rapidly, enabling consumer-grade devices that

support realistic immersive experiences. While early head-mounted displays date back
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to the 1960s (e.g., Sutherland’s Sword of Damocles), the 2010s marked a turning point
with modern devices. On the VR front, the Oculus Rift prototype (2010) by Palmer
Luckey re-ignited interest with a wide field of view and affordable design. Crowdfunded
in 2012 and acquired by Facebook in 2014, Oculus released its first consumer headset in
2016, alongside HTC’s Vive, which introduced room-scale tracking. These devices brought

high-fidelity visuals and motion tracking to mainstream audiences.

The next major step came with standalone VR headsets. The Oculus/Meta Quest
series, starting in 2019, integrated processing and inside-out tracking directly into the
headset. Quest 2 (2020) and Quest 3 (2023) improved resolution, optics, and added
passthrough AR capabilities (Ruth, 2024). In parallel, PC-based headsets like the Valve

Index and Varjo pushed the fidelity frontier for gaming and enterprise simulation.

AR hardware followed a distinct trajectory. Initial systems used handheld or laptop
setups, but the release of Microsoft’s HoloLens in 2016 marked the arrival of self-contained
AR headsets with spatial mapping and inside-out tracking. Magic Leap One (2018) added
novel display technologies (Billinghurst; Clark; Lee, 2015), while consumer experiments
like Google Glass (2013) explored heads-up interfaces before being discontinued in 2023
(Ruth, 2024).

Smartphones played a critical role in scaling AR adoption. Apps like Pokémon GO
(2016) introduced mainstream users to AR through camera overlays. ARKit (Apple) and
ARCore (Google), launched in 2017, enabled mobile AR with motion and depth tracking
(Vieyra; Vieyra, 2018).

Most recently, the line between AR and VR is blurring. Apple’s Vision Pro (announced
2023) merges high-resolution VR with passthrough AR, positioning itself as a “spatial
computer.” With features like dual 4K displays and hand/eye tracking, it may represent
a watershed moment for XR despite its premium price (Ruth, 2024).

As of 2025, the hardware ecosystem spans from mobile-based AR apps to advanced

mixed reality headsets, forming a robust toolbox for immersive educational simulations.

2.1.2 Software Ecosystems and Frameworks:

Alongside hardware, a mature software ecosystem has enabled rapid development of
immersive simulations. Modern game engines such as Unity and Unreal Engine have
become the de facto platforms for AR/VR content creation. These engines provide high-
performance 3D graphics rendering, physics simulation, and cross-platform deployment,
greatly simplifying the creation of interactive virtual environments. Unity, for example,
offers an entire XR development toolkit (with support for VR headsets and AR through

packages like AR Foundation) that abstracts away device-specific details and allows de-
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velopers to build an application once and deploy across multiple headsets (Atta et al.,
2022). Unreal Engine likewise includes integrated support for VR rendering and AR (via
ARKit/ARCore plugins), making high-fidelity visualization accessible to developers in

academia and industry.

For mobile AR, platform-specific frameworks are key. Apple’s ARKit (introduced in
i0S 11, 2017) and Google’s ARCore (for Android, 2017) brought advanced AR capabilities
to hundreds of millions of smartphones (Vieyra; Vieyra, 2018). These software develop-
ment kits handle real-time tracking of the device’s position, surface detection, lighting
estimation, and more, allowing apps to place and persist virtual objects in the user’s
environment. Thanks to ARKit/ARCore, an educator can deploy an AR simulation on
standard tablets or phones — for instance, letting students point an iPad at a textbook
and see 3D molecules or physical field lines appear “attached” to the pages. On the web,
the WebXR API has emerged as a W3C standard enabling AR and VR experiences to run
directly in web browsers using JavaScript (World Wide Web Consortium, 2021). WebXR
(successor to earlier WebVR /WebAR efforts) allows an immersive educational module to
be accessed with a simple URL, lowering the barrier to entry (no app install required)
and ensuring compatibility across different devices (from VR headsets to phones). This is
particularly relevant for broad educational deployments, where web-based delivery can be
more practical. Complementing these are various supporting frameworks: for example,
libraries for spatial mapping, hand tracking, and user interaction (e.g. Microsoft’s Mixed
Reality Toolkit for Unity, or Vuforia for image-target AR) which provide higher-level tools
for common AR/VR interactions. There are also open standards like OpenXR (released
by the Khronos Group in 2019) that unify the interface to VR/AR hardware — a devel-
oper can write code once against OpenXR and run on any compliant headset (Oculus,
SteamVR, Windows Mixed Reality, etc.), which is increasingly adopted by engines and
platforms. In summary, the software landscape — from powerful 3D engines to AR phone
toolkits and web standards — has matured to a point that immersive educational simu-
lations can be built with relatively modest effort compared to a decade ago. This thesis
will leverage these tools to construct its simulation system, ensuring it is built on proven,

widely supported technology.

2.1.3 Use Cases in Education:

AR and VR have shown strong potential to enhance learning, particularly in subjects
involving abstract or spatial concepts. Their core strength lies in making the invisible vis-
ible and the abstract tangible. In physics education, for instance, VR has helped students
visualize and manipulate 3D vectors, improving understanding of vector addition and

spatial relationships (Campos; Hidrogo; Zavala, 2022). Studies show that such immersive
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tools can boost engagement and deepen comprehension of abstract STEM topics like elec-
tromagnetism or geometry through interactive, risk-free exploration (Campos; Hidrogo;

Zavala, 2022; Johnson-Glenberg, 2018).

In astronomy and aerospace, where scales are far beyond human experience, immersive
technologies offer unique advantages. VR enables virtual field trips through space —
letting students stand on Mars or orbit planets — providing an intuitive grasp of scale
and distance. Learners can explore the solar system with accurate proportions, making
complex spatial relationships (like planetary distances or ring sizes) more comprehensible
(Atta et al., 2022). Astrophysical phenomena such as orbital mechanics and black hole

dynamics are also made more accessible through interactive VR visualizations.

In aerospace engineering, VR and AR are increasingly used for hands-on training.
Beyond traditional flight simulators, modern VR platforms allow students to perform
simulated pre-flight inspections, engine maintenance, or spacecraft docking. Vaughn Col-
lege, for example, uses VR for aviation trainees to practice inspecting and assembling
parts, reinforcing mechanical familiarity before real-world exposure. Similarly, Atta et
al. (2022) created a virtual “space lab” where students assemble a CubeSat in a simu-
lated cleanroom, boosting their understanding of subsystem configuration through direct
interaction and gamified tasks (Atta et al., 2022).

AR complements this by overlaying digital instructions on real-world hardware. NASA’s
Project Sidekick exemplifies this: astronauts use HoloLens headsets aboard the ISS to re-
ceive real-time, spatially anchored maintenance guidance (NASA, 2015). In classrooms,
AR enables students to interact with 3D models of rockets or overlay CAD designs onto
physical parts, enriching theoretical lessons with live, contextual visualization (Atta et al.,
2022; Milgram; Kishino, 1994).

2.1.4 Embodiment, Interaction, and Spatial Cognition:

A recurring theme in the educational use of AR/VR is the role of embodied and spa-
tial learning. Immersive technologies engage the human sensorimotor system — users move
their bodies to navigate virtual spaces, use gestures to interact with virtual objects, and
perceive environments at true scale. This physicality supports cognitive processing by
leveraging innate spatial reasoning and muscle memory. The theory of embodied cogni-
tion holds that learning is grounded in the body’s interactions with its environment, and
AR/VR extend this principle digitally. Johnson-Glenberg (2018) highlights the pedagog-
ical value of 3D gestures: when learners rotate a virtual object or walk through a graph,
they build stronger memory links (Johnson-Glenberg, 2018). Her research shows that
full-motion VR, where body movements align with abstract concepts, can deepen under-

standing and recall. Complementary studies (e.g., Liu et al., 2020) found improved reten-
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tion when students enacted phenomena physically, and also noted increased presence and
agency—factors tied to motivation (Campos; Hidrogo; Zavala, 2022; Johnson-Glenberg,

2018).

Spatial cognition benefits are also well-documented. VR’s stereoscopic depth and six
degrees of freedom help learners perceive complex spatial relationships, vital in subjects
like anatomy, geography, and engineering. Students exploring a molecule or a solar sys-
tem in VR can shift perspective freely, activating spatial memory and supporting what
researchers call “situated learning” — knowledge acquired in rich spatial contexts becomes
more intuitive and transferable. Campos et al. (2022), for example, found that immersive
3D interaction notably enhanced vector learning tasks requiring spatial reasoning (Cam-
pos; Hidrogo; Zavala, 2022). Similarly, in astronomy, VR's ability to scale from the Milky

Way to Earth provides concrete visualizations of abstract systems (Kersting et al., 2024).

While AR/VR offer compelling tools, they are not magic bullets — user comfort,
software complexity, and thoughtful pedagogical integration remain critical (Johnson-
Glenberg, 2018). Still, evidence shows that immersive simulations can enhance tradi-
tional teaching, especially for learning goals involving visualization, experimentation, or
embodied experience. In the context of this thesis, the implications are clear: AR and VR
form a foundational layer. They enable students to interact with simulations of aerospace
systems—such as satellites or orbital dynamics—in an intuitive and experiential manner.
As hardware becomes lighter and more capable, and software ecosystems more robust,
immersive tools are becoming increasingly viable in education. With spatial comput-
ing platforms entering mainstream use (Ruth, 2024), AR and VR are poised not just as

delivery platforms but as new paradigms for engaging with knowledge.

2.1.4.0.1 Application to This Work This thesis leverages the pedagogical strengths
of immersive spatial learning through Virtual Reality as the primary modality. While
the platform uses mixed reality hardware (Meta Quest 3) capable of both VR and AR
passthrough, the implementation focuses exclusively on VR immersion for the pedagogi-
cal reasons detailed in Section 3.3. AR passthrough remains a potential future extension
for collaborative learning contexts. The literature reviewed here establishes the broader
context of immersive educational technologies, while the implementation demonstrates
VR’s capacity to place learners inside coherent spatial environments optimized for under-

standing orbital mechanics.
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2.2 Generative Agents

Traditional software and simulations have been predominantly deterministic—given
the same inputs, they yield the same outputs. Modern Al systems built on genera-
tive models, by contrast, introduce stochasticity and creativity. Large Language Models
(LLMs) do not follow hard-coded rules; instead, they sample from probability distributions
learned from vast textual corpora. Consequently, an LLM can produce context-dependent,
varied responses rather than a single predetermined answer. This marks a paradigm shift
from scripted to emergent behaviour. In recent work, advanced LLMs such as GPT-4 have
even outperformed traditional reinforcement-learning agents in complex environments by
reasoning through text rather than executing pre-programmed control policies (Carrasco;
Rodriguez-Fernandez; Linares, 2025). While stochastic generation entails some unpre-
dictability, it is precisely this creativity that lets generative agents adapt to scenarios

beyond their designers’ foresight.

At a conceptual level an LLM is a statistical language engine: given a textual history,
it predicts the most plausible continuation one word at a time. Because it is trained on
heterogeneous data, a single model can answer coding questions, analyse legal texts, or
reason about orbital mechanics when prompted appropriately. This broad, generative

capability underpins the rise of LLM-powered agents (Anthropic, 2024).

LLM-based agents are autonomous software entities that embed an LLM as their core
“brain.” An agent senses its environment, reasons about goals, and acts—iteratively—until
a task is complete. Industry definitions describe such an agent as “a system that uses an
LLM to reason through a problem, create a plan, and execute that plan with tools” (Chen,
2023; Huang; Grady, et al., 2024). The LLM supplies the reasoning; auxiliary modules
provide planning, memory, and tool use (Anthropic, 2024). Crucially, the agent—not the
user—controls the loop: it may decide which function to call, when to revise a plan, or
whether to request clarification (OpenAl, 2023). Hence an agent is more than a single

LLM invocation; it is a continual perceive-think—act cycle.

Architectural Components

Generative-agent designs typically comprise five interacting elements (Anthropic, 2024;
Huang; Grady, et al., 2024):

e Planning and reasoning. The agent decomposes high-level goals into actionable

steps, often prompting the LLM to produce an internal plan or “chain of thought.”

e Memory. Short-term context (recent turns) and long-term knowledge (summaries or

retrieved documents) are stored externally—e.g. in a vector database—and injected
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Human Interface LLM Environment

Query

Until tasks clear

Clarify

Refine

Send context

Search files

Return paths

Until tests pass

Write code
Status
Test

Results

Complete

Display

FIGURE 2.1 — End-to-end agentic workflow from Anthropic’s “Building Effective Agents.” The human
issues a query through an interface; the LLM asks clarifying questions until the task is precise, receives
contextual files, iteratively writes and tests code against the environment, and finally returns results for
display (Anthropic, 2024).

into prompts as needed.

e Tool use and APIs. Through structured outputs (JSON function calls, shell com-
mands, etc.) the agent invokes external tools to compute, query, or effect changes

in its environment (OpenAl, 2023).

e Iterative control loop. The agent cycles through observe — reason — act —

observe, optionally reflecting or self-critiquing between steps to improve reliability.

e Autonomy and adaptation. Equipped with the above, the agent can switch strate-
gies, recover from errors, and pursue its objective with minimal human microman-

agement.

Applications and Relevance

e Simulations and interactive worlds. Park et al. created “Generative Agents” that
populate a sandbox town with virtual characters who plan, remember, and socially
interact—producing emergent storylines never scripted by the developers (Park et
al., 2023).

e Aerospace guidance and control. Carrasco et al. demonstrated an LLM agent

piloting a spacecraft in the Kerbal Space Program simulation by iteratively reading
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textual telemetry and issuing control actions, matching classical controllers without

explicit orbital equations (Carrasco; Rodriguez-Fernandez; Linares, 2025).

e Legal reasoning. Harvey Al equips law-firm associates with an agent that drafts
memos, retrieves precedents, and iteratively refines analyses through dialogue—illustrating

agentic workflows in language-dense tasks (Chen, 2023).

e Education. Khan Academy’s Khanmigo employs GPT-4 as a Socratic tutor that
adapts explanations to each learner, providing hints rather than answers and thereby

personalising study sessions at scale (Academy, 2023).

2.3 Orbital Mechanics: The Physics of Celestial Motion

The intuitive, visual understanding of orbital motion is a primary objective of this
project. While the generative agent handles the underlying calculations, a firm grasp of
the governing principles is essential to frame the simulation’s logic and appreciate its edu-
cational value. Orbital mechanics is the study of the motion of bodies under the influence
of gravity. For missions in Earth’s orbit and for interplanetary trajectories, the founda-
tional principles discovered by Isaac Newton and Johannes Kepler provide a remarkably
accurate framework for describing and predicting these celestial paths. This section out-
lines the core concepts that form the physical and mathematical basis of the simulation
system, focusing on the specific orbital regimes and parameters that the platform enables

users to explore: circular orbits, elliptical orbits, and escape trajectories.

2.3.1 Newtonian Gravity and the Two-Body Problem

At the heart of all orbital motion lies gravity. In the 17th century, Sir Isaac Newton
formulated the Law of Universal Gravitation, stating that any two bodies attract each
other with a force proportional to the product of their masses and inversely proportional to
the square of the distance between them (Curtis, 2020). This is expressed mathematically
as:

F— Gm1m2

2
where F'is the gravitational force, G is the gravitational constant (6.674x 107! N-m?2/kg?),

my and msy are the masses of the two bodies, and r is the distance between their centers.

When applied to a satellite orbiting a celestial body like Earth, this law forms the
foundation of the two-body problem. This model makes a critical simplifying assumption:
it considers only the gravitational force between the satellite and the primary body (e.g.,

Earth), ignoring perturbations such as atmospheric drag, solar radiation pressure, and
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gravitational influences from other bodies like the Moon or the Sun (Vallado, 2013).
While these forces are significant for high-precision, long-term trajectory prediction, the
two-body model provides an elegant and highly accurate approximation for foundational
analysis and educational purposes. The resulting equation of motion is:

Ll

F+ =0

<

Here, 7 is the position vector of the satellite relative to the primary body, 7 is its accelera-
tion, and p (mu) is the standard gravitational parameter of the system. For Earth-orbiting
satellites, pt = GMgarn = 398,600 km3/s?, where Mg, is Earth’s mass.

The solution to this differential equation reveals a profound geometric truth: under
the inverse-square law of gravity, the satellite’s path must be a conic section—a circle,
ellipse, parabola, or hyperbola (Curtis, 2020). Which conic section results depends on
the satellite’s energy and angular momentum. This elegant mathematical result means
that all orbital trajectories, from the circular path of the ISS to the hyperbolic escape
of Voyager, are governed by the same fundamental physics expressed through different

geometric shapes.

2.3.2 Kepler’s Laws and Orbital Geometry

Johannes Kepler, working in the early 17th century with observational data from
Tycho Brahe, empirically discovered three laws of planetary motion that would later be
shown to be direct consequences of Newtonian gravity. These laws provide the geometric

and temporal framework for understanding orbits (Bate; Mueller; White, 1971):

1. First Law (Law of Orbits): The orbit of a planet (or satellite) around the Sun (or
Earth) is an ellipse, with the central body at one focus. A circle is the special case

of an ellipse where both foci coincide.

2. Second Law (Law of Areas): A line connecting the satellite to the central body
sweeps out equal areas in equal times. This means the satellite moves faster when

closer to the central body (at periapsis) and slower when farther away (at apoapsis).

3. Third Law (Law of Periods): The square of the orbital period is proportional to
the cube of the semi-major axis. Mathematically: T2 o a®, or more precisely,
T? = %a:)’ . This law directly relates orbital size to orbital period, explaining why
the ISS at 420 km altitude completes an orbit in 92.8 minutes while the Hubble
Space Telescope at 540 km takes slightly longer at approximately 95 minutes.

Kepler’s laws were empirical observations that Newton later proved mathematically
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from first principles. Together, they provide both the geometric intuition (ellipses, not
circles, are the general case) and quantitative relationships (period depends on altitude)

that govern orbital motion.

2.3.3 Orbital Regimes: Circular, Elliptical, and Hyperbolic Trajectories

The shape of an orbit is determined by the satellite’s total mechanical energy—the sum
of its kinetic energy (from motion) and gravitational potential energy (from position in
the gravity field). This energy dictates which conic section describes the trajectory. The
platform’s simulation implements three fundamental orbital regimes, each representing a

different energy state and mission application.

2.3.3.1 Circular Orbits: Stable Operational Platforms

A circular orbit occurs when the satellite’s velocity is precisely calibrated so that
the centripetal acceleration required for circular motion exactly matches the gravitational

acceleration at that altitude. This is the special case where eccentricity e = 0.
For a circular orbit at radius r from Earth’s center (altitude h = r — Rgayn), the
required orbital velocity is given by:

®
.

Ucircular =

This relationship shows that orbital speed decreases with altitude: satellites in low
Earth orbit (LEO) travel faster than those in higher orbits. For example, the ISS at 420
km altitude orbits at approximately 7.66 km/s, while the Hubble Space Telescope at 540
km altitude travels at approximately 7.59 km /s—slightly slower due to its higher altitude.

Circular orbits are preferred for operational missions requiring predictable, repeating
ground tracks and stable altitude. The International Space Station (420 km, 51.6° incli-
nation) and Hubble Space Telescope (540 km, 28.5° inclination) both use circular orbits
because their missions benefit from the stability and predictability of constant altitude

and speed.

Kepler’s Third Law directly determines the orbital period for circular orbits:

This equation explains the relationship between altitude and period. The ISS at 420

km completes 15.5 orbits per day, providing frequent revisit times for Earth observation
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and crew operations. Hubble at 540 km has a slightly longer period, chosen to balance
orbital stability with minimizing atmospheric drag while providing optimal viewing con-

ditions for astronomical observations.

2.3.3.2 Elliptical Orbits: Variable Altitude Trajectories

An elliptical orbit occurs when 0 < e < 1, where e is the eccentricity. The satellite’s
altitude and speed vary continuously as it moves around the ellipse. The closest point to
Earth is called periapsis (or perigee for Earth orbits), and the farthest point is apoapsis
(or apogee). The size of the ellipse is characterized by the semi-major axis a, which is

half the longest diameter of the ellipse.

The relationship between the semi-major axis, periapsis radius r,, and apoapsis radius

r, IS:
Tp+ Ta

2
The eccentricity quantifies how elongated the ellipse is:

Ta —Tp

Ta +7“p

When e = 0, the ellipse becomes a circle (1, = r,). As e approaches 1, the ellipse

becomes increasingly elongated.

The satellite’s speed at any point in an elliptical orbit is given by the vis-viva equation,

one of the most fundamental relationships in orbital mechanics (Curtis, 2020):

This equation reveals that orbital speed depends on both the current position r and
the orbit’s overall size a. At periapsis, where r is smallest, the satellite moves fastest. At
apoapsis, where r is largest, it moves slowest. This speed variation is a direct consequence
of Kepler's Second Law: the satellite must move faster when closer to Earth to sweep

equal areas in equal times.

Elliptical orbits have important applications. Highly Elliptical Orbits (HEO) are used
for communications satellites serving high-latitude regions, as the satellite spends most of
its time near apoapsis with excellent visibility over polar regions. Transfer orbits between
circular orbits are also elliptical, with the initial circular orbit at periapsis and the target

circular orbit at apoapsis.
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2.3.3.3 Hyperbolic Trajectories: Escaping Earth’s Gravity

A hyperbolic trajectory occurs when e > 1. Unlike elliptical orbits, which are closed
and periodic, hyperbolic trajectories are open curves—the spacecraft approaches Earth,
swings around it, and departs, never to return. This regime represents escape from Earth’s

gravitational influence.

The minimum speed required to achieve escape from Earth’s surface is the escape

2p
Vescape — ?

At Earth’s surface (r = Rpgan = 6371 km), this yields approximately 11.2 km/s.

Notice that escape velocity is exactly v/2 times the circular orbital velocity at the same

velocity:

radius—this factor of v/2 represents the energy difference between a bound circular orbit

and an unbound escape trajectory.

For a hyperbolic trajectory, the spacecraft’s velocity at any distance is given by a

2 1
v = % ;—1—5

Note the sign change: for hyperbolic orbits, the semi-major axis a is defined as nega-

modified vis-viva equation:

tive, reflecting the fact that the orbit is unbound with positive total energy.

The Voyager spacecraft exemplify hyperbolic escape trajectories. After launch and ac-
celeration to sufficient velocity, they followed hyperbolic paths that carried them beyond
Earth’s sphere of influence and into interplanetary space. The platform uses Voyager’s
trajectory to demonstrate the transition from bound elliptical motion to unbound hyper-
bolic escape, illustrating the fundamental energy threshold that separates orbiting from

departing.

2.3.4 Orbital Orientation: Inclination and Coverage

While the size and shape of an orbit (determined by a and e) govern its energy and
geometry, the inclination determines the orbit’s orientation in three-dimensional space.
Inclination 7 is the angle between the orbital plane and a reference plane, typically Earth’s
equatorial plane. An inclination of 0 defines an equatorial orbit, while 90 defines a polar

orbit that passes directly over both poles.

Inclination is not arbitrary—it is fundamentally constrained by the launch site’s lat-
itude and the physics of rotation. When a rocket launches eastward (prograde), it ben-

efits from Earth’s rotational velocity, which is maximum at the equator ( 465 m/s) and
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decreases toward the poles. The minimum achievable inclination from a launch site is
approximately equal to the site’s latitude. For example, launches from Kennedy Space
Center (28.5°N) can achieve inclinations of 28.5° or greater, but reaching lower inclinations

would require the rocket to perform an energetically expensive plane change maneuver.

This launch constraint explains many mission orbital parameters:

e ISS (51.6° inclination): Designed to be accessible from both Kennedy Space Center
and the Baikonur Cosmodrome in Kazakhstan (45.6°N). The 51.6° inclination allows
Russian Soyuz launches from Baikonur while remaining within reasonable energy
budgets for US launches.

e Hubble (28.5° inclination): Launched from Kennedy Space Center at the minimum
possible inclination, maximizing the rotational velocity assist and minimizing fuel
requirements. This low inclination also provides good sky coverage for astronomical

observations while avoiding prolonged periods in Earth’s shadow.

Inclination also determines ground track coverage. An equatorial orbit (i = 0) never
passes over polar regions. A polar orbit (i = 90) eventually covers the entire surface as
Earth rotates beneath it. Intermediate inclinations provide a balance between coverage
and launch efficiency. The platform’s mission-specific implementations demonstrate how
operational requirements (crew access for ISS, astronomical visibility for Hubble) drive

inclination choices.

2.3.5 The Educational Foundation for Interactive Exploration

The physics and mathematics outlined in this section—Newtonian gravity, Kepler’s
laws, the vis-viva equation, and the geometric properties of conic sections—form the
computational foundation of the simulation platform. More importantly, they represent
the conceptual framework that users explore through embodied interaction in virtual

reality.

Traditional orbital mechanics education presents these concepts through equations on
paper and two-dimensional diagrams. Students memorize formulas and solve problems
numerically, but the intuitive, spatial understanding of why the ISS orbits at 7.66 km/s
or why the Hubble telescope requires a specific altitude and inclination often remains
elusive. The three-dimensional geometry of an inclined orbit, the speed variation along
an ellipse, and the meaning of escape velocity are fundamentally spatial phenomena that

are difficult to internalize from textbooks alone.

The platform’s approach inverts this pedagogy. Users begin not with equations but
with questions and curiosity: "Show me the ISS orbit.” "Why does Hubble orbit where
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it does?” "How did Voyager leave Earth?” The generative agent translates these natural
language queries into the precise orbital parameters described in this section—altitude,
eccentricity, inclination—and the Unity simulation engine renders the resulting trajecto-
ries as visible, three-dimensional curves in space. Users inhabit the orbital environment,
observing how the ISS’s 420 km circular orbit compares to Hubble’s 540 km orbit, seeing
the ellipse stretch as eccentricity increases, watching the hyperbolic escape path diverge

from closed elliptical motion.

This section has established the theoretical foundation that makes such exploration
both accurate and meaningful. The circular orbits users create are governed by v =
\/,u_/r. The elliptical orbits follow the vis-viva equation. The hyperbolic escapes exceed
Vescape = \/m The platform’s educational value rests on this foundation: it translates
rigorous astrodynamics into intuitive visual experience, enabling users to build genuine
understanding of orbital mechanics through guided exploration rather than rote memo-

rization.



3 Methodology

3.1 Design Philosophy and Approach

The development of this project is fundamentally an exploratory research endeavour
into a new paradigm of human-computer interaction for educational purposes. Given the
innovative and complex nature of integrating generative Al, immersive mixed reality, and
embodied interfaces, a rigid, waterfall-style development plan would be inappropriate. In-
stead, the methodology is guided by a philosophy that embraces iteration and modularity

to navigate the technical challenges and discovery process inherent in such work.

The approach is defined by three core principles:

e Prototype-Driven: The primary goal is the creation of a functional prototype that
demonstrates the feasibility and potential of the proposed system. This approach
prioritizes implementing the core functionalities of the user experience over exhaus-
tive feature development, allowing for tangible and testable results that can validate

the project’s central thesis.

e Iterative Development: The project will be built in iterative cycles, following a
process of building a core feature, testing its performance and usability, and refining
it based on the results. This allows for flexibility in the implementation details,
acknowledging that the optimal solutions for agent prompting and user interaction

will be discovered and improved upon throughout the development lifecycle.

e Modular Architecture: The system is designed as a collection of distinct yet in-
terconnected modules: the generative agent (the "brain”) and the simulation and
visualisation engine (the "world”). This modularity, a key objective of this project,
makes the complex system manageable, facilitates parallel development and testing

of components, and ensures the final architecture is extensible for future work.

These principles guided a four-phase development strategy. Phase 1 established the

conversational agent in the Hub environment with circular and elliptical orbit creation



CHAPTER 3. METHODOLOGY 38

capabilities. Phase 2 implemented three Mission Spaces (ISS, Hubble, Voyager) with spe-
cialist agents and scene transition tools. Phase 3 integrated bidirectional voice through
ElevenLabs (Scribe API for speech-to-text, TTS for character synthesis). Phase 4 de-
ployed the complete system to Meta Quest 3 with immersive VR visualization. Each
phase produced a testable, working system that integrated seamlessly with subsequent

development without requiring architectural changes.

3.2 System Architecture and Data Flow

The platform architecture comprises two integrated spaces: the "Hub” (Mission Con-
trol) where users create custom orbits through conversation, and "Mission Spaces” (ISS,
Hubble, Voyager) where specialists demonstrate real missions. Users navigate between
these environments via voice commands (route_to_mission, return_to_hub), with con-

versational context preserved across transitions.

The system separates conversational intelligence (OpenAl GPT-4.1 via Responses
API) from spatial visualization (Unity 3D), connected through a tool-calling interface.
The agent interprets natural language, selects appropriate tools (create_circular_or-
bit, create_elliptical_orbit, set_simulation_speed, pause_simulation, reset_-
simulation_time, clear_orbit, route_to_mission, return_to_hub), and Unity exe-

cutes the corresponding physics calculations and rendering.

3.2.1 Interaction Flow

User interactions follow one of two primary workflow patterns depending on intent:
orbit manipulation or scene navigation. Both share common stages (speech input, Al

reasoning, audio output) but diverge in tool execution and timing.

3.2.1.1 Orbit Creation Workflow

When users create or modify orbits (create_circular_orbit, create_elliptical_-

orbit, set_simulation_speed), the interaction follows eight steps:

1. User speaks orbital request via Quest 3 microphone
2. ElevenLabs Scribe API transcribes audio to text
3. OpenAl GPT-4.1 interprets intent and selects appropriate orbit tool

4. Unity’s ToolExecutor validates parameters and invokes OrbitController
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5. OrbitController calculates trajectory using vis-viva equation and renders visual-

ization in current scene
6. Tool execution result (orbital parameters, velocity, period) returns to LLM
7. Agent generates educational response explaining the created orbit

8. ElevenLabs TTS synthesizes voice and audio plays through Quest 3

3.2.1.2 Navigation Workflow

When users navigate between environments (route_to_mission, return_to_hub),
the interaction extends to nine steps:

1. User speaks navigation request via Quest 3 microphone

2. ElevenLabs Scribe API transcribes audio to text

3. OpenAl GPT-4.1 interprets intent and selects navigation tool

4. Unity’s ToolExecutor validates destination and prepares transition

5. Tool execution result confirms target scene

6. Agent generates contextual transition response (e.g., “Connecting you to ISS spe-

cialist”)

7. ElevenLabs TTS synthesizes character-specific voice (Mission Control’s authority,

specialist’s expertise)
8. Audio plays through Quest 3 spatial audio system

9. After audio completes, SceneTransitionManager loads Mission Space with con-

versation context preserved

Both workflows maintain conversation history across turns via MissionContext single-
ton, enabling contextual dialogue. The critical distinction: orbit tools execute within the
current scene (immediate visual feedback), while navigation tools trigger asynchronous
scene transitions after Al response completes (preventing audio cutoff mid-sentence).
Users control all aspects—orbit creation, mission navigation, simulation parameters—through

voice alone.
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3.3 Mixed Reality Design Rationale

While the Quest 3 hardware supports both VR and AR passthrough capabilities, the
platform implementation focuses exclusively on immersive VR for pedagogical reasons.
Orbital mechanics involves scales (420 km for ISS, 35,786 km for geostationary orbit) in-
compatible with domestic spaces—AR overlays would show trajectories passing through
walls and furniture, creating perceptual friction between room-scale and cosmic-scale con-
texts. VR isolation places users within the orbital environment itself, establishing coherent
spatial context where Earth floats in space and trajectories exist in their natural domain.
The architecture could potentially support future AR passthrough implementation for
collaborative learning, museum installations, or classroom demonstrations where physical

anchoring adds value, though this extension was not implemented in the current work.

3.4 Technical Implementation

The system implements conversational AT (OpenAl GPT-4.1 for reasoning, Eleven-
Labs for voice synthesis/transcription) interfaced with Unity 6 (6000.0.47f1) physics sim-
ulation. The agent embodies four characters—Mission Control in the Hub, plus three
mission specialists (ISS crew perspective for LEO operations, Hubble engineer for tele-
scope mission design, Voyager/Sagan persona for interplanetary trajectories)—each with
distinct voice profiles and expertise areas. Unity implements two-body orbital physics in
C#, calculates trajectories via vis-viva equation, and renders visualizations on Quest 3.
The platform supports circular orbit creation (160-35,786 km altitude) and elliptical orbit
creation (periapsis/apoapsis 160-100,000 km), with inclination constrained to 0-180°.

3.5 Development and Version Control

The project follows systematic development practices using GitHub for version con-
trol. All source code—including Unity C# scripts, prompt templates, and configuration
files—is tracked in a central repository, providing complete history of changes and enabling
experimental work through branching without compromising the main project stability.
This systematic approach aligns with the iterative development philosophy, where each

development cycle’s progress is documented and preserved.
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3.6 Validation Strategy

The platform’s technical feasibility and system integration are validated through demon-
stration of complete interaction scenarios across all mission spaces, showing that the pro-
posed architecture functions reliably in representative educational workflows. The valida-
tion approach prioritizes operational evidence: users exploring orbital mechanics through
natural conversation, navigating between Hub and Mission Spaces, and experiencing the
full voice-driven VR cycle. Implementation details are documented and made publicly
available to enable independent verification of feasibility claims. Users provide their own
API keys for OpenAl and ElevenLabs services. Comprehensive documentation covers

Unity configuration, Quest 3 deployment, and integration procedures.

3.7 Core Module Implementation

This section describes how the platform’s four primary modules—conversational agent,
orbital physics simulation, voice integration, and virtual reality environment—work to-
gether to create an immersive educational experience for learning orbital mechanics. Each
subsection explains the educational rationale behind key design decisions and how they
support the learning objectives established in Section 3. Additional technical details are
provided in Appendices A-D; complete implementation is available in the public reposi-

tory.

3.7.1 Agent System Implementation

The conversational agent system removes the traditional barrier between learning in-
tent and technical execution by enabling natural language control of orbital simulations.
Learners can express goals like “Create an orbit matching the ISS” or “Show me a highly
elliptical orbit” without needing to understand programming, coordinate systems, or simu-
lation APIs. This design decision directly addresses a core challenge in physics education:

allowing students to focus on conceptual understanding rather than technical syntax.

Following the tool-calling architecture outlined in Section 2.2, the system implements
OpenAl GPT-4.1 with a structured tool-calling framework that interprets user requests
and invokes validated simulation commands. When a learner asks to create an orbit,
the agent translates natural language into precise physics parameters (altitude, inclina-
tion, eccentricity), executes the orbital calculation, and explains the result in educational
terms. Critically, the agent disambiguates between orbital velocity (the speed required to
maintain a specific orbit, calculated from physics) and simulation time speed (how fast

the visualization plays back)—a common source of confusion that this explicit separation
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prevents.

The platform embodies two agent archetypes: Mission Control (at the Hub) focuses on
orbit creation and simulation control, while three mission specialists (ISS, Hubble, Voy-
ager) provide mission-specific educational context when learners navigate to dedicated
Mission Spaces. This dual-character design supports two learning modes: hands-on ex-
perimentation at the Hub, and contextual deepening through mission-specific dialogue.
Conversation history persists across scene transitions, enabling learners to ask follow-up
questions like “What was the altitude of the orbit I just created?” after switching con-

texts—supporting iterative, exploratory learning patterns.

Technical implementation details, including prompt architecture, tool schemas, con-
text management algorithms, and API integration specifications, are documented in Ap-

pendix A.

3.7.2 Orbital Physics Simulation

The orbital physics engine translates altitude specifications into velocity requirements
automatically, making visible a fundamental relationship that students often struggle to
grasp: that orbital speed is not arbitrary but determined by altitude through gravitational
physics. When a learner requests “an orbit at 420 km like the ISS,” the system calculates
the required velocity (7.66 km/s) using the vis-viva equation and displays both values
together. This automatic calculation prevents a common misconception—that higher
orbits move faster—by immediately showing that geostationary satellites at 35,786 km
altitude actually travel slower (3.07 km/s) than low Earth orbit satellites, despite their

greater distance.

The simulation implements two-body Keplerian mechanics (Section 2.3) with physics-
consistent trajectory calculations for circular and elliptical orbits. Visual trajectories
render as continuous curves in VR space, allowing learners to observe geometric prop-
erties directly: circular orbits maintain constant radius, while elliptical orbits visually
demonstrate eccentricity through their oblong shape. Scale compression maps Earth’s
6,371 km radius to a comfortable VR viewing volume while preserving proportional re-
lationships—the ISS appears at 6.6% of Earth’s radius above the surface, matching the
real ratio—enabling learners to develop accurate spatial intuition about orbital altitudes

without being overwhelmed by vast scales.

Critically, all physics calculations occur in real units (km, km/s) before conversion to
rendering space, ensuring that displayed values match published orbital data for ISS, Hub-
ble, and other missions. This fidelity allows learners to verify simulation results against

authoritative sources, building confidence in the educational tool. Complete physics im-
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plementation, including vis-viva equation derivations, scale compression algorithms, and

trajectory visualization methods, appears in Appendix B.

3.7.3 Voice Integration Pipeline

Voice interaction addresses a practical constraint of immersive VR environments (Sec-
tion 2.1): hands holding controllers cannot easily type, and virtual keyboards break im-
mersion. The system implements bidirectional speech through push-to-talk input (Quest
3 controller A button) and synthesized character voices, enabling learners to engage in
natural spoken dialogue while manipulating 3D orbital visualizations. This hands-free
modality supports exploratory learning patterns where students voice hypotheses (“What
happens if I increase the altitude?”), observe results, and refine understanding through
iterative questioning—a cognitive process difficult to sustain when switching between

physical keyboards and immersive VR.

Each agent character embodies a distinct voice: Mission Control speaks with au-
thoritative encouragement at the Hub, while mission specialists (like Anastasia, the ISS
expert) adopt personalities aligned with their educational roles—professional, technical,
and approachable. This character differentiation serves pedagogical purposes beyond en-
gagement: learners develop associative memory between voice identity and knowledge
domain, reinforcing context switching as they navigate between experimental workspace
(Hub) and mission-specific deepening (ISS, Hubble, Voyager spaces). Voice synthesis oc-
curs within 1-3 seconds of agent response generation, maintaining conversational flow

without perceptible delays that would disrupt the learning dialogue.

The push-to-talk mechanism balances spontaneity with intentionality: learners explic-
itly signal when they wish to speak, preventing accidental voice activation while preserving
the natural rhythm of conversation. This design choice emerged from recognizing that ed-
ucational dialogue differs from commercial voice assistants—students need time to think
between questions, and the platform should not interpret silence as disengagement. Tech-
nical details of speech-to-text processing, audio synthesis parameters, and character voice

management appear in Appendix C.

3.7.4 Virtual Reality Environment

As discussed in Section 2.1, the virtual reality environment transforms abstract orbital
mechanics into spatial experiences that leverage human depth perception and propriocep-
tion. Orbits exist as three-dimensional curves that learners can walk around, crouch be-
neath, and observe from multiple vantage points—building geometric intuition impossible

to achieve through 2D screens or static diagrams. Seeing an elliptical orbit’s eccentric-
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ity from different angles, or observing how inclination tilts the orbital plane relative to
Earth’s equator, engages spatial reasoning faculties that support conceptual understand-

ing of orbital geometry.

The platform deploys to Meta Quest 3, a standalone VR headset enabling tetherless
movement around orbital visualizations without PC connection constraints. Maintain-
ing stable stereoscopic rendering ensures visual comfort during extended learning ses-
sions, preventing the nausea and fatigue that would undermine educational effectiveness.
Performance optimization drove architectural decisions throughout the implementation:
single-pass instanced rendering reduces GPU overhead, texture compression minimizes
memory bandwidth, and asynchronous scene loading prevents visible stuttering during

navigation between Hub and Mission Spaces.

The multi-scene architecture supports distinct learning contexts: the Hub provides an
experimental workspace for orbit creation and manipulation, while three Mission Spaces
(ISS, Hubble, Voyager) offer focused environments for deepening understanding of specific
missions. Scene transitions preserve conversation history and simulation state, allowing
learners to seamlessly shift between hands-on experimentation and contextual exploration.
Spatial Ul elements render in 3D world space rather than head-locked overlays, main-
taining presence and spatial grounding while providing necessary information—mission
elapsed time, simulation speed, and dialogue responses appear as objects in the environ-

ment rather than disconnected interface chrome.

Technical specifications for Quest 3 deployment, including Android build configuration,
input system implementation, stereo rendering pipeline, and performance optimization

strategies, are detailed in Appendix D.



4 Results and Demonstration

This chapter demonstrates the complete functional platform through the lens of an
actual user learning journey. Rather than presenting isolated features, each section follows
the narrative arc of the demonstration session, showing how a learner explores orbital
mechanics concepts through curiosity-driven dialogue with Al specialists, hands-on orbit

creation, and immersive VR visualization.

The demonstration validates all six specific objectives established in Section 1.3 through

integrated scenarios:

e Objective #1 (Physics-consistent simulation): Orbital velocities and periods match
analytical predictions (user-created orbit at 422 km: 7.66 km /s, consistent with ISS

velocity at nominal 420 km altitude)

e Objective #2 (Natural language interpretation): User questions like “What’s a

good altitude?” trigger appropriate tool selection and specialist routing

e Objective #3 (Multimodal VR interaction): Voice commands, spatial presence,

and Quest 3 stereoscopic rendering enable embodied learning

e Objective #4 (Real-time coherence): Scene transitions, voice synthesis, physics

calculations, and rendering execute reliably without interruption

e Objective #5 (Modular architecture): Hub and three Mission Spaces (ISS, Hubble,

Voyager) operate as distinct scenes sharing common infrastructure

e Objective #6 (Reproducible implementation): Complete source code, documenta-

tion, and deployment guides enable independent verification

The chapter structure follows the demonstration’s pedagogical pattern: question —
specialist guidance — hands-on creation — visual observation — iterative refinement.
This complete cycle repeats twice for circular orbits (Section 4.2) and elliptical orbits
(Section 4.3), demonstrating experiential learning through hands-on creation. The escape
trajectory section (Section 4.4) demonstrates a complementary mode: conceptual dialogue
without hands-on creation, showing the platform’s flexibility to support both experiential

and theoretical learning depending on pedagogical context.
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4.1 Entering the Orbital Environment

The platform’s learning journey begins when the user puts on the Quest 3 headset
and enters the virtual environment. This onboarding sequence—cutscene introduction,
Hub arrival, and first interaction—establishes spatial context, introduces the conversa-
tional agent, and demonstrates the voice-driven interface that will mediate all subsequent

exploration.

4.1.1 Opening Sequence: Narrator Introduction

The experience opens with a cinematic sequence. The user’s viewpoint begins in deep

space, far from Earth, while a narrator’s voice provides context:

NARRATOR: Above us, thousands of satellites trace perfect arcs—testaments
to gravity, velocity, and the geometry of motion. You're about to join that
tradition. I'll guide the physics; you'll design the orbits. Together, we’ll

explore how spacecraft navigate the cosmos.

FIGURE 4.1 — Opening cutscene frame showing Earth from deep space. The camera begins at this distant
perspective before zooming toward the Hub’s orbital position.

As the narrator speaks, the camera moves smoothly toward Earth over 28.7 seconds,
establishing the cosmic scale while framing the interaction paradigm. The phrase “I'll
guide the physics; you’ll design the orbits” positions the learner as active participant

rather than passive observer.
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4.1.2 Hub Environment Arrival: Spatial Presence and Agent Welcome

When the cutscene concludes, the user arrives at the Hub—Mission Control’s orbital
workspace. The transition from cinematic observer to embodied presence is immediate:

the user now floats in space, surrounded by stars, with Earth directly ahead.

FIGURE 4.2 — Hub environment from user perspective. Earth floats in stereoscopic three-dimensional
space, rendered with 8K textures to provide visual fidelity while maintaining stable frame rate on Quest
3.

CAPCOM greets the user, establishing orientation and interaction mechanics. The
welcome message orients the user spatially (“floating above Earth”), introduces push-to-
talk voice input (A button), explains available capabilities (orbit design and specialist
consultation), and previews the three Mission Spaces—ISS, Hubble, and Voyager (full
greeting in Appendix E). CAPCOM’s professional warmth distinguishes Mission Control

from the three specialists who will appear with their own vocal identities and expertise.

4.1.3 Satellite Discovery: First Interaction

After orienting to the environment, the user notices a spacecraft model floating near
Earth’s surface. This three-dimensional satellite will serve as the visual anchor for all
orbital trajectories created during the session. The user moves closer to examine it, then

presses the A button to speak:

USER: Hey, Capcom. I see we have a satellite here. Is this the satellite that

we can build?
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FIGURE 4.3 — Close-up view of the simulation satellite in the Hub environment. The user has navigated
their perspective to examine the spacecraft model.

This first voice interaction exercises the complete bidirectional speech pipeline. The

agent responds in conversational mode:

CAPCOM: Hello from Mission Control. Yes—this is your simulation satellite.
We can build orbits by setting circular or elliptical paths. Tell me either the
altitude for circular, or periapsis and apoapsis for elliptical, and I'll get it

launched.

CAPCOM'’s response introduces orbital terminology: “altitude” defines circular or-
bits, while “periapsis and apoapsis” specify elliptical paths. The complete interaction
cycle—button press, speech transcription, agent response, audio synthesis—completes in
4-6 seconds, establishing the conversational rhythm that will support exploratory learning

throughout subsequent sections.

4.2 Learning Through Mission Specialist Dialogue: The ISS
Circular Orbit

This section demonstrates the platform’s complete pedagogical cycle: conceptual ques-
tion — specialist consultation — hands-on orbit creation — VR observation. The user

wants to create a circular orbit but doesn’t know what altitude to choose.
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4.2.1 Conceptual Question and Specialist Routing

The user asks a foundational question (see Appendix E for complete dialogue):

USER: Cool. Let’s start with a circular orbit. I need an altitude—but what’s
a good altitude? What determines a good altitude?

CAPCOM recognizes this as an educational question requiring mission-specific context

and routes to the ISS specialist:

CAPCOM: Connecting you to the ISS mission for real-world examples. Stand
by.

4.2.2 1SS Mission Space and Specialist Dialogue

The scene transitions to ISS Mission Space with conversation context preserved. The
environment loads with the pre-configured ISS orbit (420 km altitude, 51.6° inclination)

visible as a cyan trajectory.

FIGURE 4.4 — ISS Mission Space showing the pre-configured ISS orbit. Anastasia greets the user with
context awareness about altitude selection.

Anastasia provides context-aware guidance:

ISS_.CREW (Anastasia): Hello from the ISS. For circular LEO orbits, engi-

neers balance drag, launch energy, accessibility, and mission needs. The ISS
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flies around 420 km—high enough to limit atmospheric drag so we don’t slow
down too quickly, but not so high that crew/cargo launches become inefficient.
It’s also reachable from multiple launch sites. Too low: frequent reboosts. Too

high: launches get harder and more expensive.

The user continues with follow-up questions, validating their reasoning by asking if
choosing ISS altitude would be “absurd.” Anastasia confirms it’s “quite sensible” and
representative of “decades of flight heritage.” When asked if the ISS orbit is circular, she
clarifies: “Nearly. The path is close to circular with small variations |...] Near-circular

simplifies rendezvous and ops.” After recapping the altitude ( 420 km), the user requests

return to Hub.

4.2.3 Orbit Creation and Physics Validation
After returning to the Hub, the user creates a circular orbit:

USER: I'll build a circular orbit at 422 km.

CAPCOM: Copy. Circular orbit set at 422 km, inclination 0° (equatorial).
Orbital speed 7.66 km/s—like the ISS, but over the equator.

The calculated velocity (7.66 km/s) matches the real ISS orbital speed, validating

physics accuracy. The user then tests a common misconception:

USER: Can I choose the speed?
CAPCOM: In this sim, speed is derived from altitude by physics. At 422 km,

you need 7.66 km/s for a stable circular orbit. If you want a different speed,

pick a different altitude.

CAPCOM’s response prevents a common misconception by clarifying that orbital

speed is determined by altitude through physics, not an independent variable.
4.2.4 Orbital Period and Time Acceleration

The user observes the created orbit and asks about period:

USER: How long does one lap take? It looks fast, but Earth is massive.

ISS_CREW (Anastasia): At 420 km, the ISS completes a lap in 92.8 min-
utes—about 15 orbits/day. Higher altitude — slower speed — longer period.

That’s why we see a sunrise/sunset every 45 minutes.
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FIGURE 4.5 — Close perspective view of the 422 km circular orbit after creation. The cyan trajectory
traces a perfect circle around Earth’s equator (inclination 0°). The satellite model is visible at one point
along the orbit. This visualization enables spatial observation of circular geometry that would be difficult
to comprehend from 2D diagrams. The user can move their VR viewpoint to observe the orbit from
multiple angles, supporting the spatial cognition discussed in Section 2.1.

After returning to Hub, the user requests time acceleration to observe multiple orbits:

USER: With our current orbit ( 92 minutes), can we speed up the simulation

so I can see it go around?

CAPCOM: Time acceleration: 10x. You'll see the 92-minute trip much faster.

This temporal compression enables observation of the complete 92-minute orbital cycle
within a reasonable viewing window, demonstrating successful disambiguation between

simulation playback speed and orbital velocity.

4.3 Exploring Orbital Geometry: Elliptical Orbits and Ec-

centricity

Building on circular orbit knowledge, the user explores elliptical geometries with visible

speed variation.

4.3.1 Hubble Specialist Consultation

The user asks about elliptical orbits (Appendix E):
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USER: Great. I built a circular orbit. What’s an elliptical orbit?

CAPCOM: Perfect question for Hubble—routing.
DR_HARRISON provides a comparative explanation:

HUBBLE_ENGINEER (DR_HARRISON): Circular means constant distance
and speed—Ilike Hubble (/540 km) for steady imaging and predictable ser-
vicing. Elliptical stretches the path: closer at periapsis (faster), farther at
apoapsis (slower). Some science missions pick elliptical to linger where condi-

tions are best or to avoid interference (e.g., high apogee above the radiation

belts).

FIGURE 4.6 — Hubble Mission Space with DR_HARRISON explaining elliptical orbital geometry. The
environment shows Hubble’s circular orbit (540 km altitude, 28.5° inclination) as a reference for compar-

ison.

When asked why missions choose elliptical orbits:

USER: Why choose elliptical if circular is simpler?

HUBBLE_ENGINEER (DR_HARRISON): To optimize time in a region. Ex-
ample: Chandra uses a highly elliptical orbit to spend long stretches far from

Earth’s radiation belts for cleaner X-ray observations. Trade-off: more com-

plex tracking/operations.
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4.3.2 Iterative Orbit Creation

After returning to Hub, the user requests elliptical orbit creation:

USER: Please build an elliptical orbit—anything interesting so I can compare.

CAPCOM: Elliptical orbit set: periapsis 400 km, apoapsis 2,000 km, inclina-

tion 0°. Watch it speed up near Earth and slow down far away.

FIGURE 4.7 — First elliptical orbit (periapsis 400 km, apoapsis 2,000 km) showing visible elongation
compared to the circular orbit.

After observing at 100x time acceleration, the user provides qualitative feedback:

USER: Make it more elliptical; it still looks circular.

CAPCOM creates a more eccentric orbit:

CAPCOM: Roger. New orbit: periapsis 200 km, apoapsis 1,000 km, inclina-

tion 0°. The speed contrast will be much more dramatic.

The user observes visible speed variation:

USER: Wow—huge difference between near and far.
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FIGURE 4.8 — Satellite at apoapsis (farthest point, slowest velocity).

FIGURE 4.9 — Satellite at periapsis (closest point, fastest velocity), demonstrating Kepler’s Second Law
through visible speed contrast.
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4.4 Conceptual Extension: Escape Trajectories and Mission

Context

The user’s conceptual progression continues to escape trajectories (full transcript in
Appendix E):

4.4.1 Voyager Specialist: Beyond Bound Orbits

USER: Wow—huge difference between near and far. For deep-space missions,

I assume there aren’t circular orbits at all. Is everything elliptical?
CAPCOM routes to Voyager specialist:

CAPCOM: Routing to Voyager for escape-trajectory talk.
Karl explains the distinction between bound and unbound trajectories:

VOYAGER_SPECIALIST (Karl): Great question. To leave Earth, you don’t
stay in an Earth orbit. Voyager 1 began in a near-circular parking orbit briefly,
then received a final boost to a hyperbolic escape trajectory—no longer bound
to Earth. Satellites around Earth use circular or elliptical orbits to remain
nearby; escape missions transition from a staging orbit to hyperbolic and head

out—past Earth, past the Sun’s planets, toward interstellar space.
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FIGURE 4.10 — Voyager Mission Space environment. Karl, the Voyager specialist, embodies a contempla-
tive character distinct from the technical specialists encountered earlier. The voice synthesis uses slower
pacing (speed 0.9, configured in KarlVoiceSettings) to convey thoughtful reflection. This environment
demonstrates that the platform supports both experiential learning (Sections 4.2 and 4.3) and conceptual

dialogue.

The user continues exploring:

USER: So it’s like breaking free from gravity?

VOYAGER_SPECIALIST (Karl): Exactly. Think of it as climbing out of
Earth’s gravitational well. Circular and elliptical orbits stay in the well, per-
petually falling around Earth. A hyperbolic trajectory has enough energy to
climb out completely. Voyager didn’t just orbit—it escaped.

Karl uses accessible metaphors to explain the physics. When asked about mission

execution:

USER: How did they actually do it?

VOYAGER_SPECIALIST (Karl): Voyager launched from Earth, first reach-
ing a temporary parking orbit around 160-200 km. Then, at the optimal mo-
ment, the upper stage fired—adding enough velocity to exceed escape speed.
That burn transitioned the trajectory from elliptical to hyperbolic. Once be-
yond Earth’s sphere of influence, Voyager’s path was governed by the Sun’s

gravity, heading toward Jupiter for the first gravitational assist.

The final exchange adds philosophical context:

USER: That’s incredible. It’s really leaving everything behind.
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VOYAGER_SPECIALIST (Karl): Past Earth, past the Sun’s planets, toward
interstellar space. Voyager carries humanity’s first message to the cosmos.
The golden record, the images, the sounds of Earth—all riding on a hyperbolic
trajectory that will never return. It’s physics, yes, but it’s also a statement of

who we are and what we dream.

Karl’s contemplative voice pacing and philosophical framing differentiate this specialist
from Anastasia’s operational focus and Dr. Harrison’s engineering precision. Unlike pre-
vious sections, this interaction remains conceptual-—the user does not create a hyperbolic
trajectory—demonstrating the platform’s support for both experiential and theoretical

learning modes.

4.5 System Integration and Technical Validation

Having followed the user’s learning journey from initial Hub arrival through special-
ist consultations on circular orbits, elliptical geometries, and escape trajectories (Sec-
tions 4.1-4.4), we now shift from pedagogical narrative to technical validation. This
section presents operational evidence validating Objectives #1 (physics accuracy), #4
(real-time coherence), and #5 (modular architecture) through measurements from the

demonstration session, followed by honest assessment of validation scope and limitations.

4.5.1 Operational Validation
4.5.1.1 Tool Execution Reliability

The demonstration session exercised the complete tool suite defined in ToolSchemas. json
(Appendix A). Table 4.1 documents all invocations with their parameters and execution

results.

Navigation tools (route_to_mission, return_to_hub) dominated usage (8 of 13 in-
vocations), reflecting the pedagogical structure from Sections 4.1-4.4: learners alternate
between specialist consultation (mission spaces) and hands-on experimentation (Hub
workspace). All 13 invocations succeeded without errors or parameter validation fail-
ures. Unused tools (pause_simulation, reset_simulation_time, clear_orbit) reflect
session flow rather than technical limitations; these capabilities remain functional and

documented in Appendix A.
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TABLE 4.1 — Tool Execution Summary from Demonstration Session. Note: Multiple visits to the same
mission space (e.g., ISS visited twice) result in more scene transitions (9 total) than unique tool invocations

shown here.
Tool Name Uses Parameters (Example)  Result
route_to_mission 4 mission_id: “ISS” (2x), Scene transitions to spe-
“Hubble” (1x), “Voyager” cialist Mission Spaces;
(1x) conversation context pre-
served
return_to_hub 4 (no parameters) Scene transitions back to
Hub from each mission
space visited
create_circular_orbit 1 altitude_km: 422, in- Circular orbit created;
clination_deg: 0 velocity calculated: 7.66
km/s; period: 92.8 min
create_elliptical_orbit 2 First: periapsis_km: Elliptical orbits with ec-
400, apoapsis_km: 2000, centricities e ~ 0.11 and
inclination_deg: 0. e=0.06 (low eccentricity
Second: 200, 1000, 0 explains user’s observa-
tion that orbit “still looks
circular”); speed varia-
tion observable in VR
set_simulation_speed 2 speed_multiplier: 10 Time scale adjusted;
(1x), 100 (1x) satellite motion acceler-
ated by factors of 10x
and 100x
pause_simulation 0 (not used in demo) (capability exists but not
exercised)
reset_simulation_time 0 (not used in demo) (capability exists but not
exercised)
clear_orbit 0 (not used in demo) (capability exists but not

exercised)

4.5.1.2 Performance Characterization

System responsiveness directly impacts educational effectiveness—excessive latency

between user input and platform response disrupts conversational flow and spatial pres-

ence. Latencies were measured during the demonstration session via Unity console times-

tamps and video recording analysis; external API processing times (STT, LLM, TTS)

depend on network conditions and server load. Table 4.2 presents observed latency ranges

for each interaction stage.

Voice interaction latency (4-7s) proved acceptable for educational dialogue, where

conversational pacing naturally includes contemplative pauses; external API processing

dominates this pipeline. Scene transitions (3-5s) via asynchronous loading maintained ex-

periential continuity through persistent background music, smooth visual fades, and con-
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TABLE 4.2 — System Performance Metrics (Measured During Demonstration)

Operation Latency Description

Voice transcription (STT) 1-2 s ElevenLabs Scribe API speech-to-
text processing time

Agent reasoning (LLM) 2-3s OpenAl GPT-4.1 tool selection
and response generation

Voice synthesis (TTS) 1-2's ElevenLabs text-to-speech audio
generation

Total voice interaction cycle 4-7s Complete STT — reasoning —
TTS pipeline

Scene transition (Hub <« Mission) 3-5s Asynchronous scene load with
transition overlay

Orbit creation (circular/elliptical) <0.1 s Physics calculation and trajec-
tory rendering

VR frame rate (Quest 3) Stable Stereoscopic rendering main-

tained throughout demo

versation context preservation. VR rendering stability persisted during computationally
intensive operations including 8K textures, scene transitions, and 100x time-accelerated
animation—rendering optimizations (Appendix D) validated real-time coherence under

representative workload.

4.5.2 Physics Fidelity Assessment

Educational credibility requires physics fidelity—learners must trust that simulated
phenomena reflect real orbital mechanics. The platform implements vis-viva equation for

velocity calculations:

2 1
VUcircular = \/g and Uelliptical(r) = % (; - a) (41)

where p = 398,600 km?3/s? (Earth’s standard gravitational parameter), r is orbital ra-
dius from Earth’s center, and a is semi-major axis. All calculations occur in real units (km,
km/s, rad/s) before Unity scale conversion (k = 0.000785), ensuring displayed velocities

reflect actual orbital mechanics verifiable against authoritative sources.

4.5.2.1 Implementation Validation

Calculated velocities match analytical predictions from Equation 4.1:

e ISS altitude (420 km): v = 1/398,600/6,791 = 7.66 km/s, period T = 2m\/r3/p =

92.8 minutes
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e User demonstration orbit (422 km): v = 7.66 km/s (Section 4.2)

e Elliptical orbit (200 km x 1000 km): v, = 7.87 km/s at periapsis, v, = 7.02 km/s
at apoapsis—12% speed variation visually perceptible in VR (Section 4.3)

4.5.2.2 Acknowledged Limitations

The physics implementation validates arithmetic consistency (calculations follow Kep-

lerian dynamics), but several limitations warrant acknowledgment for educational context:

e Two-body approximation: Simulation omits perturbations (J2 oblateness effects,
atmospheric drag below 400 km, third-body gravitational influences) relevant for
operational mission planning but negligible for educational visualization at demon-

strated timescales.

e No orbit propagation validation: Future work should compare simulated trajec-
tories against published Two-Line Element (TLE) data from Space-Track.org over
24-hour propagation windows, providing external validation beyond analytical self-

consistency.

¢ Simplified Kepler dynamics: Platform demonstrates fundamental orbital mechanics
concepts (circular/elliptical motion, velocity-altitude relationships, Kepler’'s Laws)
appropriate for introductory education; advanced topics (station-keeping, orbital

transfers, rendezvous) remain future extensions (Section 4.6).

This physics scope aligns with thesis objectives (Section 1.3): demonstrating feasibil-
ity of agent-guided immersive learning for foundational orbital mechanics, not replacing

professional mission planning tools.

4.5.3 Integration Evidence

Sections 4.5.1-4.5.2 validated individual components through quantitative metrics.
This subsection presents evidence of complete system integration: a continuous demon-
stration recording showing all subsystems operating together without interruption, manual

intervention, or post-production editing.

4.5.3.1 Video Documentation

A demonstration recording captures the complete user session analyzed throughout

this chapter. The full interaction transcript appears in Appendix E.
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Access: https://www.youtube.com/watch?v=37314_CgTtY
Duration: 19 minutes, 12 seconds of uninterrupted interaction

Recording Format: Direct Quest 3 capture (first-person stereoscopic perspective, spa-

tial audio, 90 Hz refresh maintained throughout)

Content Scope: The recording covers all interaction scenarios presented in this chap-
ter: environment entry (Section 4.1), ISS consultation and circular orbit creation (Sec-
tion 4.2), Hubble consultation and elliptical orbit exploration (Section 4.3), and Voyager
consultation on escape trajectories (Section 4.4). Tool execution included 9 scene transi-

tions, 3 orbit configurations, and 2 time acceleration adjustments.

4.5.3.2 Multimodal Coordination Evidence

The continuous recording demonstrates multimodal coordination across the complete

workflow:

Context persistence: The MissionContext singleton maintained conversation history
across all 9 scene transitions. Specialists referenced prior exchanges when greeting the user
(Anastasia: “You're asking about good altitude choices”; Dr. Harrison: “You’ve built cir-
cular orbits—now let’s explore elliptical geometry”; Karl: “You're wondering about deep-
space trajectories beyond circular and elliptical orbits”), demonstrating that the modular

architecture (Objective #5) preserves state coherence despite environment changes.

Physics-dialogue synchronization: Agent responses referenced visible trajectories dur-
ing operation. Example: “Watch it speed up near Earth and slow down far away” spoken

while elliptical orbit displayed on screen (Section 4.3).

Misconception correction: When the user asked “Can I choose the speed?”, CAPCOM
clarified the physics constraint in real-time: “Speed is derived from altitude by physics.
At 422 km, you need 7.66 km/s for a stable circular orbit” (Section 4.2). This prevented

conceptual error without disrupting learning flow.

These observations provide qualitative evidence of system integration under represen-
tative educational workload, complementing quantitative metrics in Sections 4.5.1-4.5.2.
The recording, combined with the open-source repository (Section 4.6), enables indepen-

dent verification by the research community.

4.5.4 Validation Scope and Acknowledged Limitations

The validation presented in Sections 4.5.1-4.5.3 demonstrates operational feasibility

through a single extended demonstration session. While this approach documents in-


https://www.youtube.com/watch?v=S73l4_CgTtY
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tegrated system performance under realistic usage, several limitations warrant explicit

acknowledgment to properly contextualize the thesis contribution.

4.5.4.1 Limited Sampling

The validation relies on a single demonstration session (N=1, duration 19:12) rather
than systematic testing across multiple users and usage scenarios. This limitation affects

generalizability:

Variance characterization: Performance metrics (Tables 4.1 and 4.2) represent single
measurements without statistical distribution; mean latencies and standard deviations

across diverse sessions remain unquantified.

Failure mode exploration: All 13 tool invocations succeeded in the demonstrated ses-
sion. Edge case behavior—ambiguous voice commands, out-of-range parameter requests,
API timeout handling, concurrent tool requests—remains untested. While the platform
implements validation logic (constraint checking in ToolSchemas. json, parameter bounds
in OrbitController.cs), systematic stress testing would characterize failure boundaries

more completely.

User diversity: The demonstration captures a single learner’s interaction pattern.
Variation across user populations (different prior knowledge levels, linguistic backgrounds,

spatial cognition abilities, VR motion sensitivity) remains unexamined.

4.5.4.2 No Comparative Baseline

Educational effectiveness is not measured against comparative baselines:

Traditional simulators: Platform performance not compared to established orbital
mechanics tools (Kerbal Space Program, Orbiter, AGI STK) in terms of learning curve,

comprehension accuracy, or engagement metrics.

Textbook problem-solving: No controlled study comparing immersive VR exploration

versus traditional analytical problem sets for concept retention or transfer tasks.

User study absence: Learning outcomes (pre/post-test knowledge gains, miscon-
ception remediation effectiveness, spatial understanding improvements) not quantified

through empirical educational research methods.

4.5.4.3 Physics Validation Constraints

As noted in Section 4.5.2, the physics implementation demonstrates arithmetic con-

sistency with Keplerian dynamics but lacks external validation against operational data:
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No trajectory propagation testing: Simulated orbits not compared against published
Two-Line Element (TLE) sets from Space-Track.org over multi-orbit propagation win-

dows.

Simplified dynamics: Two-body approximation appropriate for introductory educa-
tion but omits perturbation effects (J2, atmospheric drag, solar radiation pressure) rele-

vant for advanced study or operational mission planning.

4.5.4.4 Validation Interpretation

These boundaries define the thesis contribution as a feasibility demonstration and
architectural foundation rather than comprehensive validation of educational efficacy.
The work establishes:

e Technical viability: All subsystems (conversational Al, physics simulation, VR ren-
dering, voice 1/0O) integrate successfully and operate reliably under demonstrated

conditions.

e Architectural soundness: Modular design (Objective #5) supports extension and
adaptation, as evidenced by straightforward mission addition procedures documented

in Section 4.6.

e Pedagogical promise: Qualitative observations (misconception correction, iterative
refinement, conceptual progression) suggest educational potential warranting further

empirical study.

Systematic evaluation through controlled user studies, comparative baseline testing,
and longitudinal learning outcome measurement constitute essential future work (Chap-

ter 5) to transition from proof-of-concept to validated educational intervention.

4.6 Implementation Availability

To enable independent verification and replication of this feasibility study, the com-
plete implementation is publicly available at https://github.com/eduardozindani/
orbitAIsimulation. The repository contains all Unity C# source code (31 core runtime
scripts in Assets/Scripts/ across Al/, Orbital/, Core/ modules, plus 7 editor utilities, to-
taling 72 C+# files), conversational prompts, configuration assets, and Quest 3 deployment
settings. Documentation covers system architecture, API configuration (users provide

their own OpenAl/ElevenLabs keys), and build procedures.


https://github.com/eduardozindani/orbitAIsimulation
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This availability serves three research purposes: (1) Technical verification—researchers
can audit physics implementations (vis-viva equations in OrbitController.cs) and prompt
engineering strategies; (2) Replication studies—the platform can be deployed in controlled
educational experiments to measure learning outcomes; (3) Extension research—the mod-
ular architecture (Section 3.1) enables investigation of alternative configurations (local
LLMs, different VR hardware, additional physics domains) without invalidating baseline

feasibility claims.

The implementation is released under MIT License to minimize barriers to academic
use. The focus of this work is demonstrating operational feasibility through working
prototype; questions of pedagogical effectiveness, scalability, and widespread adoption

remain subjects for future controlled studies.



5 Conclusion

This work demonstrates that immersive virtual reality combined with generative Al
agents enables a new mode of scientific education. The platform fulfills its six objectives:
physics-consistent simulation grounded in vis-viva equations, natural language interpreta-
tion via OpenAl GPT-4.1 tool-calling, multimodal VR interaction through Quest 3 voice
input, real-time coherence, modular architecture supporting independent scenes, and re-
producible implementation. Validation occurred through complete interaction scenarios
where learners progress from uncertainty (“what’s a good altitude?”) to informed design
(“I’ll build a circular orbit at 422 km”) via dialogue with specialist agents, hands-on cre-

ation, and immersive observation.

This work is fundamentally a feasibility demonstration, not a pedagogical effectiveness
study. The central research question asks: Is it operationally possible to combine immer-
siwe VR, generative Al agents, and voice interaction to create a functional educational
platform for orbital mechanics? The answer, validated through working prototype and
complete interaction scenarios, is affirmative. The platform functions reliably, integrates
complex technologies coherently, and executes the intended learning cycle. Whether this
approach proves educationally superior to traditional methods requires controlled studies

with learners—a research direction this work enables but does not conduct.

The pedagogical architecture distinguishes this platform. Orbital mechanics is not
presented as declarative knowledge but as spatial phenomena to be designed, questioned,
and inhabited. When a learner asks about altitude selection, CAPCOM routes them to ISS
specialist who explains engineering rationale (atmospheric drag versus launch efficiency,
accessibility from launch sites) and validates their reasoning. The learner then creates
the orbit, observes the trajectory, and accelerates time to witness the orbital period. This
cycle—consultation, creation, observation—validated across three scenarios (ISS circular,

Hubble elliptical, Voyager escape) structures learning as negotiated discovery.

This work reveals insights about educational interfaces in spatial computing. Embod-
iment transforms comprehension: learners inhabit orbital phenomena rather than observe
abstractions, witnessing speed variation at periapsis rather than calculating it. Conver-

sation enables discovery: specialist agents interpret vague questions and provide context-
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appropriate guidance, enabling education as meaning-making. Modularity enables ex-
tension: architectural separation between intelligence (OpenAl), simulation (Unity), and
rendering (Quest 3) allows new missions in five steps without core modifications. Repro-
ducibility enables verification: releasing the complete implementation enables indepen-
dent researchers to audit technical claims, replicate scenarios, and investigate alternative

configurations without reimplementation costs.

Significant questions remain unanswered. This work demonstrates operational feasi-
bility but not learning effectiveness through controlled studies. Does conversation improve
conceptual understanding compared to traditional instruction? Does immersive visual-
ization enhance retention? These require longitudinal studies with control groups. The
demonstration validated one learning path; alternative pedagogical sequences remain un-
explored. The voice pipeline depends on external APIs, creating dependencies unsuitable
for offline deployment. The physics implements two-body dynamics validated against mis-
sion parameters but does not support perturbations or impulsive maneuvers required for

advanced planning. These limitations define the research frontier this work establishes.

The platform establishes foundation for research trajectories spanning pedagogical
studies (controlled effectiveness experiments, adaptive modeling, collaborative multiplayer),
technical extensions (SGP4 propagation, local LLM deployment, AR passthrough), and
cross-domain applications (atmospheric flight dynamics, thermodynamic cycles, circuit
analysis). These domains share the challenge of making abstract phenomena spatially
intuitive through the same architecture: conversational agents orchestrating physics sim-

ulation via tool-calling in immersive VR.

This work demonstrates feasibility. The central question—whether immersive VR
combined with conversational AI can serve as an educational platform for orbital me-
chanics—is answered affirmatively through operational validation. The system functions
reliably, integrates complex technologies coherently, and executes the pedagogical cycle
from conceptual uncertainty to informed design. The implementation is publicly released
under MIT License with modular architecture and comprehensive documentation, en-
abling reproducibility and extension. Whether this paradigm proves educationally supe-
rior to traditional instruction remains an open question requiring controlled studies—this

work establishes that it is technically possible.
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Appendix A - Agent System

Implementation

This appendix provides detailed technical implementation specifications for the con-
versational agent system described in Section 3.7.1, implementing the tool-calling archi-
tecture and memory management principles outlined in Section 2.2. All class names,
method signatures, file paths, and code excerpts are verified against the Unity project

source code.

A.1 Prompt Architecture

The agent system operates through structured prompts stored in the PromptSettings
ScriptableObject configuration asset. Table A.1 summarizes the prompt components and

their purposes.

TABLE A.1 — Agent Prompt Component Specifications

Prompt Component Purpose
toolSelectionPrompt Interprets user intent, returns tool JSON
responsePrompt Generates natural language responses

specialistSystemPrompt  Frames mission specialist character
nonToolResponseTemplate Handles conversational interactions
toolResponseTemplate Formats tool execution feedback
specialistIntroTemplate Generates 40-word greetings

A.1.1 Hub Agent: Three-Tier Prompt System

The Hub agent (Mission Control) uses three coordinated prompts:
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Tool Selection Prompt

Instructs GPT-4.1 to analyze user natural language input and return structured JSON
identifying which tool to invoke. Stored in PromptSettings.toolSelectionPrompt (As-
sets/Scripts/Core/Config/PromptSettings.cs, lines 16-107), the prompt explicitly defines

eight available tools:

Orbit Creation: create_circular_orbit, create_elliptical_orbit

Simulation Control: set_simulation_speed, pause_simulation, reset_simula-

tion_time

Workspace Management: clear_orbit

Navigation: route_to_mission, return_to_hub

Example Tool Selection Prompt Fragment

The following excerpt from toolSelectionPrompt illustrates the instruction format

for tool create_circular_orbit:

1. create_circular_orbit
- Use when: User wants a simple orbit at one altitude
- Parameters:
* altitude_km (required): 160-35786 km
* inclination_deg (optional): 0-180° (O=equatorial, 90=polar)

- Examples: ISS orbit, geostationary orbit

OUTPUT FORMAT (strict JSON only)

{
"intent": "execute_tool" | "none",
"tool": "create_circular_orbit" | ... | null,
"parameters": {
// Tool-specific parameters
}
}

This structured format enables GPT-4.1 to reliably extract user intent and generate
valid tool invocation JSON. The prompt includes routing guidance to distinguish between
simulation control requests (handled by Hub tools) and educational queries (routed to

Mission Space specialists).



APPENDIX A. AGENT SYSTEM IMPLEMENTATION 72

Response Prompt

Generates natural language explanations of tool execution results. Stored in Prompt-
Settings.responsePrompt (Assets/Scripts/Core/Config/PromptSettings.cs, lines 111-

197), it includes explicit disambiguation guidance to prevent confusion between:

e Orbital velocity (physics-calculated, 7.66 km/s for ISS)

e Simulation time speed (user-controllable playback multiplier)

Non-Tool Response Template

Handles conversational interactions that do not require tool execution, such as greet-
ings (“Hello, I'm Mission Control”), capability inquiries (“What can you do?”), and edu-

cational questions.

A.1.2 Mission Specialist Prompts

Mission Space specialists (ISS, Hubble, Voyager) use the specialistSystemPrompt
(Assets/Scripts/Core/Config/PromptSettings.cs, lines 229-267), which frames the agent
as an enthusiastic mission expert focused on education rather than simulation control.

Character configuration occurs through MissionConfig ScriptableObject assets:

e ISS_Config.asset: Character name “Anastasia”’, personality “Professional engineer
- clear, technical, friendly”

e Hubble_Config.asset: Hubble Space Telescope mission specialist

e Voyager_Config.asset: Voyager interplanetary mission specialist

The specialistIntroTemplate generates concise 40-word, 10-15 second greetings

acknowledging the routing context from route_to_mission.

A.2 Tool Schema and Validation

The eight tools are defined in ToolSchemas . json (Assets/Resources/Tools/ToolSchemas.json,
168 lines) with complete JSON Schema specifications. Table A.2 documents parameter

constraints enforced by the ToolRegistry validation system.
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TABLE A.2 — Tool Parameter Constraints

Tool Parameter Constraint
create_circular_orbit altitude_km 160-35,786 km
create_circular_orbit inclination_deg 0-180°

create_elliptical_orbit
create_elliptical_orbit
create_elliptical_orbit
set_simulation_speed

periapsis_km
apoapsis_km
inclination_deg
speed_multiplier

160-35,786 km
160-100,000 km
0-180°
0.1-100x

A.2.1 Tool Execution Pipeline

The ToolExecutor class receives validated tool calls from the agent system and invokes

corresponding C# methods:

e Orbit Tools — OrbitController.CreateCircularOrbit(), CreateEllipticalOr-

bit()

e Time Controls — TimeController.SetSpeed(), Pause(), ResetTime ()

e Navigation Tools — SceneTransitionManager.TransitionToMission(), Transi-

tionToHub ()

e Workspace — OrbitController.ClearOrbit()

Execution results—success status, generated orbital parameters, error messages—feed

back into the LLM response generation cycle through the response prompt template.

A.3 Conversation Context Management

The ConversationHistory class maintains conversation continuity across multi-turn

dialogues and scene transitions. Table A.3 documents the exchange data structure.

TABLE A.3 — Conversation Exchange Data Structure

Field Content

timestamp
userMessage

DateTime of exchange
User’s natural language input

agentResponse Agent’s generated response

toolExecuted
location

Tool name (or null if conversational)
Current scene (Hub, ISS, Hubble, Voyager)
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A.3.1 Context Window Management

The system maintains a sliding window of the last 10 exchanges (maxHistorySize =

10). Two methods provide context injection into prompts:

e GetFormattedHistory(lastNExchanges = 5): Returns detailed history with times-

tamps, locations, and tool executions for the last 5 exchanges

e GetContextSummary(lastNExchanges = 3): Returns condensed 3-exchange sum-

mary optimized for token efficiency

A.3.2 Cross-Scene Persistence

Scene transitions preserve conversation history through Unity’s DontDestroyOnLoad
mechanism. The PromptConsole GameObject, containing the ConversationHistory
component, persists across scene unloading when users invoke route_to_mission or re-
turn_to_hub tools. This ensures unbroken dialogue continuity: a user can ask “What was
the ISS orbit altitude I created in the Hub?” after transitioning to the ISS Mission Space.

A.4 API Integration

The OpenAIClient class (Assets/Scripts/Al/Services/OpenAlClient.cs, 151 lines) im-
plements asynchronous HTTP communication with OpenAl’s Responses API endpoint

(/responses).

A.4.1 Request Structure
Requests to the /responses endpoint include:
e Model: "gpt-4.1"

e Input: User’s natural language message

e Instructions: Concatenated system prompt + conversation history 4+ tool schemas

The CompleteAsync () method constructs JSON payloads using Unity’s UnityWebRe-

quest for async/await compatibility.
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A.4.2 Response Parsing

The client extracts assistant text from JSON responses through a two-stage fallback:

1. Primary: Extract output_text convenience field (if present)

2. Fallback: Concatenate all output[].content[].text arrays

Tool call JSON undergoes validation by ToolRegistry before execution. Results for-
mat back into natural language through the response prompt template system, generating
contextual explanations like: “I've created a circular orbit at 420 km altitude with 51.6°

inclination. The orbital velocity is 7.66 km/s, matching the ISS configuration.”

A.4.3 Mission-Specific Configuration

Each Mission Space scene loads scene-specific OpenAISettings ScriptableObject as-
sets that override the default system prompt, enabling character switching when users

transition from Hub (Mission Control) to Mission Spaces (specialist agents).



Appendix B - Orbital Physics

Implementation

This appendix provides detailed technical specifications for the orbital physics simu-
lation engine described in Section 3.7.2, implementing the two-body Keplerian mechanics
and vis-viva equation principles outlined in Section 2.3. All equations, algorithms, class
methods, and numerical values are verified against the Unity project physics implemen-

tation.

B.1 Two-Body Keplerian Mechanics

The simulation implements two-body orbital mechanics under the following simplifying

assumptions:

Earth modeled as a point mass at the coordinate system origin

Satellite treated as a massless test particle (no gravitational influence on Earth)

No atmospheric drag, solar radiation pressure, or third-body perturbations

Instantaneous orbital maneuvers (no finite burn durations)
These assumptions yield closed-form Keplerian solutions suitable for educational visu-

alization while maintaining physical accuracy for the mission profiles studied (ISS, Hubble,

Voyager departure trajectory).

B.2 Vis-Viva Equation Implementation

The vis-viva equation relates orbital velocity to position and total orbital energy.

Table B.1 documents the physical constants used throughout the simulation.



APPENDIX B. ORBITAL PHYSICS IMPLEMENTATION 77

TABLE B.1 — Physical Constants for Orbital Calculations

Constant Value Symbol
Earth’s standard gravitational parameter 398,600 km?®/s?
Earth’s mean radius 6,371 km Rg
Unity scale compression factor 0.000785 Unity/km k
Unity Earth radius 5 Unity units  Runity

B.2.1 Circular Orbit Calculation

Circular orbits (e = 0) simplify the vis-viva equation to:

g (B.1)

Ucircular =

where r = Rg + h is the orbital radius from Earth’s center, and h is the altitude above

Earth’s surface.

Implementation Method

The OrbitController.CreateCircularOrbit() method (lines 229-290) accepts al-
titude in kilometers and automatically calculates orbital velocity, eliminating user confu-
sion between altitude and speed parameters. Algorithm B.2 documents the calculation

sequence.

TABLE B.2 — Circular Orbit Calculation Algorithm

Step Calculation

1. Validate altitude hinput — Clamp(160, 35,786) km
2. Compute orbital radius r=Rg+h=06371+h km

3. Calculate orbital velocity v = \/pu/r km/s

4. Convert to Unity scale TUnity = Runity + A - k

5. Convert to angular velocity w = (v - k)/runity rad/s

Example: ISS Orbital Velocity

For the International Space Station at h = 420 km altitude:
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r = 6,371 + 420 = 6,791 km

398,600
= ? pu— . k
v =] 6,701 7.66 km/s

7.66 x 0.000785
— — 0.00113 rad
5+ (420 x 0.000785) rad/s

w

This matches the real ISS orbital velocity of approximately 7.66 km/s.

B.2.2 Elliptical Orbit Calculation

Elliptical orbits (0 < e < 1) use the full vis-viva equation:

(B.2)
(B.3)

(B.4)

(B.5)

where a is the semi-major axis and r is the instantaneous distance from Earth’s center.

Orbital Elements Derivation

Given periapsis altitude h, and apoapsis altitude h,:

r, = Rg + h, (periapsis radius)
ro = Re + hy  (apoapsis radius)

. rp + Ta . . .
a=-" (semi-major axis)
T —T .
e= (eccentricity)
Tq +Tp

Implementation Method

The OrbitController.CreateEllipticalOrbit () method (lines 300-367) computes

velocity at periapsis using Equation B.5 with r = r:

(B.10)

Table B.3 documents parameter validation constraints enforced before calculation.
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TABLE B.3 — Elliptical Orbit Parameter Constraints

Parameter Constraint
Periapsis altitude h, 160-35,786 km
Apoapsis altitude h, h, +1 km to 100,000 km
Eccentricity e 0 < e < 1 (enforced implicitly)
Inclination ¢ 0-180°

B.3 Scale Compression

The simulation implements logarithmic scale compression to fit orbital mechanics
within the Meta Quest 3’s comfortable rendering volume while preserving geometric rela-
tionships.

B.3.1 Compression Factor Derivation

Earth’s physical radius (6,371 km) maps to 5 Unity units:

R ni o ] 1
k= S = o = 0000785 Unity units/kom (B.11)

Example Mappings
Table B.4 shows real-world altitudes mapped to Unity rendering coordinates.

TABLE B.4 — Scale Compression Examples

Mission Real Altitude (km) Unity Altitude
ISS 420 420 x 0.000785 = 0.33
Hubble 540 540 x 0.000785 = 0.42
Geostationary 35,786 35,786 x 0.000785 = 28.1

This compression maintains visual proportions: the ISS appears at 0.33/5 = 6.6% of
Earth’s radius above the surface, matching the real ratio of 420/6,371 = 6.6%.

B.3.2 Numerical Stability

All physics calculations occur in real units (km, km/s) before conversion to Unity

space for rendering. This ensures:

e No floating-point precision loss from working with very small Unity coordinates

e Physical accuracy verifiable against published orbital data
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e Separation of physics (model) from rendering (view)

The OrbitController methods perform calculations in kilometers, then convert final

results through multiplication by k& only when setting Unity Transform positions.

B.4 Trajectory Visualization

The OrbitVisualizer class (280 lines) generates trajectory curves by sampling the
orbital ellipse equation at discrete points and rendering through Unity’s LineRenderer

system.

B.4.1 Orbital Ellipse Equation

The orbit trajectory follows the polar equation:

r(8) = a(l —e?)

- -/ B.12
1+ ecosf ( )

where 6 is the true anomaly (angle from periapsis), a is the semi-major axis, and e is

the eccentricity.

B.4.2 Sampling Algorithm

The OrbitVisualizer.CalculateOrbitalPoint () method (Assets/Scripts/Orbital/OrbitVisual
lines 217-231) samples Equation B.12 at 128 evenly-spaced true anomaly angles 6 €
[0, 27). For each sample point:

~a(l—e?)

~ 1+4ecosf (B-13)
x =rcos(f + w) (B.14)
z=rsin(f +w) (B.15)

where w is the argument of periapsis (orientation of the ellipse major axis in the orbital

plane).
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Inclination Transformation

The resulting planar coordinates undergo rotation by inclination angle ¢ via rotation

matrix:

1 0 0
R;,= |0 cosi —sini (B.16)

0 sin? cos?

This tilts the orbital plane from equatorial (XZ) to the specified inclination angle,
enabling visualization of polar orbits (ISS at 51.6°) and equatorial orbits (geostationary
at 0°).

B.4.3 Rendering Configuration

Table B.5 documents the Unity LineRenderer configuration for optimal VR visibility.

TABLE B.5 — LineRenderer Configuration Parameters

Parameter Value

Path resolution 128 points

Line width 0.05 Unity units

Color Cyan (0, 1, 1) with 0.7 alpha

Shader Sprites/Default (view-aligned billboarding)

Loop closure Enabled (connects point 127 to point 0)

Special Cases

e Circular orbits (e = 0): Simplify to constant radius r = a, producing perfect circles
e Elliptical orbits (0 < e < 1): Render with visible eccentricity

e Debug visualization: Green gizmo at periapsis, red gizmo at apoapsis for develop-

ment testing

B.5 Coordinate System Conventions

The simulation uses Unity’s left-handed coordinate system with the following conven-

tions:

e Origin: Farth’s center of mass
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e Equatorial plane: XZ plane (y = 0)
e Polar axis: +Y direction points toward North Pole
e Reference direction: +X axis defines 0° longitude

e Orbital motion: Counterclockwise when viewed from above North Pole (right-hand

rule)

This convention aligns with standard aerospace engineering practices while accommo-

dating Unity’s left-handed rendering system.



Appendix C - Voice Pipeline

Implementation

This appendix provides detailed technical specifications for the bidirectional voice
system described in Section 3.7.3, implementing voice interaction as a hands-free modality
for immersive VR environments outlined in Section 2.1. All API endpoints, audio formats,
class methods, and processing parameters are verified against the Unity project voice

integration code.

C.1 System Architecture

The voice pipeline implements bidirectional audio through ElevenLabs cloud APIs,
enabling natural spoken interaction with the agent system. The data flow follows this
sequence: user speech — speech-to-text transcription — agent processing — text-to-

speech synthesis — audio playback.

Component Responsibilities

e PromptConsole: Manages microphone capture, push-to-talk input detection, and

audio playback

e ElevenLabsClient: Handles HTTP communication with ElevenLabs APIs (Assets/Scripts/Al/S
394 lines)

e Unity AudioSource: Plays synthesized speech through Quest 3’s spatial audio sys-

tem

e Unity Microphone: Captures user voice input at 16 kHz sample rate
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C.2 Speech-to-Text Pipeline

Speech recognition converts user voice input to text through ElevenLabs’ Scribe v1

transcription model. Table C.1 documents the audio capture specifications.

TABLE C.1 — Speech-to-Text Audio Capture Specifications

Parameter Value

Sample rate 16,000 Hz (optimized for speech)
Bit depth 16-bit PCM

Channels Mono

Maximum duration 30 seconds

Audio format (transmitted) WAV with RIFF header

API endpoint /speech-to-text

Model scribe_v1

C.2.1 Push-to-Talk Input Detection

Voice recording activates through push-to-talk button press. The PromptConsole.Update ()
method (lines 281-323) implements platform-specific input detection with debouncing to
prevent accidental double-triggers.

Input Source Detection

e Desktop testing: Space key via Input.GetKeyDown(KeyCode.Space)

e VR deployment: Quest 3 right controller A button via OVRInput.Get (OVRInput.Button.One,
OVRInput.Controller.RTouch)

State Machine

Table C.2 documents the recording state transitions.

TABLE C.2 — Recording State Machine

State Trigger Next State
Idle Button press Recording
Recording Button release Processing

Processing Transcription complete Idle

During the Recording state, a red visual indicator displays “Listening...” to provide

user feedback.
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C.2.2 Audio Capture and Conversion

The StartRecording() method initiates Unity’s Microphone.Start () with the spec-
ifications in Table C.1. When the user releases the button, StopRecordingAndTran-

scribe() processes the captured audio.

WAV Conversion Algorithm

The ConvertAudioClipToWav () method (lines 322-368) converts Unity’s AudioClip
format to WAV for API transmission:

1. Extract float samples from AudioClip.GetData()
2. Convert float [-1.0, 1.0] to 16-bit signed integer [-32768, 32767
3. Construct RIFF WAV header (44 bytes):

o Chunk ID: “RIFE”
e Format: “WAVE”

e Subchunk 1: “fmt ” (audio format specification)

e Subchunk 2: “data” (PCM samples)

4. Concatenate header + PCM data

C.2.3 API Request Structure

The WAV bytes transmit to ElevenLabs via WiWForm multipart HT'TP POST:

POST https://api.elevenlabs.io/vl/speech-to-text
Content-Type: multipart/form-data
Headers: xi-api-key: [API_KEY]

Body:
- file: recording.wav (binary WAV data)
- model_id: "scribe_v1"

C.2.4 Response Parsing

The API returns JSON containing:
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e text: Transcribed text string

e confidence: Recognition confidence score [0.0-1.0]

The transcribed text feeds directly into the agent’s ProcessUserInput () method for

intent interpretation and tool selection.

C.3 Text-to-Speech Pipeline

Agent text responses convert to speech through ElevenLabs’ text-to-speech API. Ta-

ble C.3 documents the synthesis configuration.

TABLE C.3 — Text-to-Speech Synthesis Parameters

Parameter Value

Model eleven_flash_v2_5

Stability 0.7 (voice consistency)
Similarity boost 0.8 (voice clarity)

Speed 1.0 (normal playback)

Audio format (received) MP3

API endpoint /text-to-speech/{voiceld}
Synthesis latency 1-3 seconds (typical)

C.3.1 API Request Structure

The TextToSpeechAsync () method (lines 31-129) sends synthesis requests:

POST https://api.elevenlabs.io/vl/text-to-speech/{voiceId}
Content-Type: application/json
Headers: xi-api-key: [API_KEY]

Body:
{
"text": "Agent response text here",
"model_id": "eleven_flash_v2_5",
"voice_settings": {
"stability": 0.7,
"similarity_boost": 0.8,

"speed": 1.0
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C.3.2 MP3 Decoding and Playback

The API returns MP3-encoded audio via HT'TP response body. The ConvertMp3ToAudioClipAsy:
method (lines 135-154) performs decoding:

1. Write MP3 bytes to temporary file in Application.temporaryCachePath

2. Load via UnityWebRequestMultimedia.GetAudioClip(uri, AudioType.MPEG)

3. Enable streaming mode for memory efficiency

4. Extract AudioClip from request

5. Delete temporary file in finally block

The resulting AudioClip plays through Unity’s AudioSource component attached to
the camera, utilizing Quest 3’s spatial audio capabilities for immersive voice delivery

positioned at the user’s head location.

C.3.3 Model Selection Rationale

The eleven_flash_v2_5 model balances:

e Synthesis speed: 1-3 seconds for typical 2-3 sentence responses (critical for real-
time interaction)

e Voice fidelity: Natural prosody and intonation

e API cost: Flash models optimize for speed over maximum quality

C.4 Character Voice Management

Each agent character uses a distinct ElevenLabs voice ID configured in MissionCon-
fig.specialistVoice ScriptableObject references. Table C.4 documents character voice

assignments.

C.4.1 Scene-Specific Voice Switching

When users invoke the route_to_mission tool, the scene transition loads mission-

specific ElevenLabsSettings assets that override the default voice ID. This ensures:
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TABLE C.4 — Character Voice ID Assignments

Character Voice ID Characteristics

Mission Control NOpB1lnGIn09m6vDVFKFC Authoritative, encouraging, pro-
fessional

Anastasia (ISS Specialist) ZF6FPAbjXT4488VcRRnw Professional engineer - clear,
technical, friendly

Dr. Harrison (Hubble Specialist) M4zkunnpRihDKTNFOD7f Veteran aerospace engineer - tech-
nical, experienced, proud of Hub-
ble’s legacy

Karl (Voyager Specialist) t10G321G6Z6edP2XJLiz Philosophical scientist and cosmic

poet - contemplative, poetic, awe-
inspiring

e Hub agent responses use Mission Control voice

e [SS Mission Space responses use Anastasia’s voice profile

e Each specialist maintains consistent vocal identity

Voice synthesis parameters (stability, similarity boost, speed) remain constant across

all characters to maintain audio quality consistency, while the underlying voice models

provide tonal and character differentiation.

C.4.2 Voice Settings Persistence

The ElevenLabsClient caches the current ElevenLabsSettings reference.

Scene

transitions update this reference automatically through Unity’s scene loading hooks, en-

abling seamless character voice switching without code changes in the agent logic.

C.5 Error Handling and Fallbacks

The voice pipeline implements robust error handling for network failures and API

timeouts:

Speech-to-Text Errors

e Microphone unavailable: Display error message, fall back to text input

e API timeout: Retry once with exponential backoff, then show error

e Low confidence score: Accept transcription but log warning
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Text-to-Speech Errors

e API timeout: Display text response without audio
e MP3 decode failure: Log error, display text fallback

e AudioSource unavailable: Silent failure, text remains visible

All errors log to Unity console with structured error messages for debugging while

maintaining graceful degradation of user experience.

C.6 Performance Optimization

C.6.1 Memory Management

e Temporary WAV /MP3 files deleted immediately after use
e AudioClip instances released when playback completes
e Streaming mode for MP3 decoding reduces peak memory usage

e No audio caching (prioritizes memory over latency)

C.6.2 Latency Budget

Table C.5 documents typical latency components for the complete voice interaction

cycle.

TABLE C.5 — Voice Interaction Latency Budget

Component Latency
User speech duration Variable (user-controlled)
WAV conversion < 100 ms
STT API request 500-1500 ms
Agent processing (GPT-4.1) 1000-3000 ms
TTS API request 1000-3000 ms
MP3 decode < 200 ms
Audio playback start < 50 ms
Total (excluding user speech) 2.5-7.8 seconds

The 2.5-7.8 second response time falls within acceptable bounds for educational con-

versational interfaces, where thoughtful responses outweigh instantaneous feedback.



Appendix D - VR Deployment

Configuration

This appendix provides detailed technical specifications for the Meta Quest 3 virtual
reality deployment described in Section 3.7.4, implementing the spatial learning and im-
mersive presence principles outlined in Section 2.1. All build settings, input mappings,
rendering configurations, and scene architecture details are verified against the Unity

project configuration files.

D.1 Quest 3 Android Build Configuration

The application deploys to Meta Quest 3 through Unity’s Android build pipeline with
OpenXR integration. Table D.1 documents the core build settings from ProjectSet-

tings.asset.

TABLE D.1 — Android Build Configuration

Setting Value
Unity Version 6000.0.47f1
Meta XR SDK 78.0.0

Minimum SDK Version 32 (Android 12L)
Target SDK Version 32 (Android 12L)
Target Architecture ARMVT (value: 2)

Graphics API OpenGL ES 3.0

XR Plugin OVRPlugin (Oculus SDK)
Stereo Rendering Mode  Single Pass Instanced (value: 2)
Target Device Meta Quest 3

D.1.1 SDK Version Rationale

Android API level 32 (Android 12L) enables:

e Quest 3’s inside-out tracking system (6DOF head and controller tracking)
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e Oculus runtime features (Guardian boundary, passthrough API access)
e Hand tracking capabilities (though not actively used in this application)

e Performance optimizations for Snapdragon XR2 Gen 2 processor

D.1.2 Stereo Rendering Pipeline

Single-pass instanced rendering (value 2 in ProjectSettings.asset line 49) reduces

CPU overhead by rendering both eye views in a single draw call. This technique:

Halves per-frame CPU work compared to multi-pass rendering

Maintains Quest 3’s 90 Hz refresh rate target

Reduces GPU state changes and draw call overhead

Critical for mobile VR performance on battery-powered hardware

D.1.3 Build Index Scene Configuration

Table D.2 documents the scene inclusion from EditorBuildSettings.asset.

TABLE D.2 — Scene Build Index Configuration

Index Scene Name File Size
0 Hub.unity 85 KB
1 ISS.unity 65 KB
2 Hubble.unity 66 KB
3 Voyager.unity 62 KB
4 ARHub.unity (experimental) 61 KB

Scene index 0 (Hub) loads at application startup. Scene transitions occur through

SceneManager .LoadSceneAsync () with scene names or indices.

D.2 Input System Implementation

Controller input integrates Oculus Touch controllers through the OVR Input API.
Table D.3 documents the input bindings used in the application.
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TABLE D.3 — Controller Input Mapping

Action Desktop Quest 3 VR

Push-to-talk (voice) Space key  Right controller A button
Confirm/Select Enter key  Right controller trigger
Cancel/Back Escape key Left controller B button

D.2.1 Push-to-Talk Implementation

The PromptConsole.Update () method (line 283) detects the right controller’s A but-
ton through OVR Input API:

bool aButtonPressed = OVRInput.Get(
OVRInput.Button.One,
OVRInput.Controller.RTouch

)

State Debouncing

The system tracks previous button state (_previousAButtonState) to detect rising
edge transitions, preventing accidental double-triggers from single button presses. This

ensures one recording session per button press/release cycle.

D.2.2 Desktop Testing Mode

Desktop mode falls back to keyboard input through Unity’s legacy Input system:
bool spacePressed = Input.GetKeyDown(KeyCode.Space);

This enables development iteration without VR hardware, maintaining identical func-

tionality across desktop testing and Quest 3 deployment.

D.2.3 VR Mode Detection

The StaticVRCameraAligner class (89 lines) detects VR mode at startup through:
bool isVR = XRSettings.isDeviceActive;

When isDeviceActive returns true, the system locates the OVRCameraRig component

via FindObject0fType<OVRCameraRig>() and configures VR-specific camera settings.
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D.3 Camera and Rendering Configuration

D.3.1 OVRCameraRig Structure

The Quest 3 camera system follows Oculus SDK conventions. Table D.4 documents

the camera hierarchy.

TABLE D.4 — VR Camera Hierarchy

GameObject Purpose
OVRCameraRig Root container for VR camera system
TrackingSpace Offset container for room-scale tracking

CenterEyeAnchor  Head-tracked camera position (stereo)
LeftEyeAnchor Left eye render camera
RightEyeAnchor  Right eye render camera
LeftHandAnchor  Left controller tracking
RightHandAnchor Right controller tracking

D.3.2 Near Clip Plane Configuration

The StaticVRCameraAligner configures the near clip plane to prevent geometry clip-

ping at close range (line 68):
cam.nearClipPlane = 0.01f; // Unity units

This 0.01 Unity unit near clip (approximately 1.27 c¢m in physical space with scale
compression factor k& = 0.000785) ensures Ul elements positioned within arm’s reach

remain visible without clipping.

D.3.3 Desktop Camera Alignment

Desktop mode aligns the fallback camera to match VR positioning conventions, ensur-
ing consistent coordinate systems between development and deployment environments.

This allows testing of Ul positioning and scene layout without VR hardware.

D.4 Spatial UI Implementation

User interface elements render in 3D world space rather than screen overlay to ensure
VR readability and depth perception. Table D.5 documents the Ul rendering configura-

tion.
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TABLE D.5 — Spatial UI Rendering Configuration

Parameter Value

Canvas render mode WorldSpace

Canvas size (transition overlay) 2m x 2m

Canvas distance from camera 1 meter (dynamic)
Mission logo size 512x512 pixels
Text component TextMeshPro
Background opacity (UI panels) 0.7 alpha

Sort order (transition canvas) 100 (renders on top)

D.4.1 MissionClockUI Pattern

The MissionClockUI class (74 lines) demonstrates the spatial Ul pattern:

1. Canvas component with RenderMode .WorldSpace
2. TextMeshPro text field positioned in 3D environment

3. CanvasGroup component (line 37) controls opacity without render-to-texture over-
head

4. Displays mission elapsed time and simulation speed multiplier

D.4.2 Transition Overlay System

The SceneTransitionManager.CreateTransitionUIIfNeeded () method (lines 729

838) constructs the transition overlay procedurally:

Canvas Construction

Canvas canvas = canvasObj.AddComponent<Canvas>();
canvas.renderMode = RenderMode.WorldSpace;

canvas.sortingOrder = 100;

RectTransform canvasRect = canvasObj.GetComponent<RectTransform>() ;

canvasRect.sizeDelta = new Vector2(2f, 2f); // 2m X 2m

Dynamic Positioning

The LateUpdate () method (lines 154-180) repositions the canvas 1 meter in front of

the camera each frame:
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transitionCanvasTransform.position =
cachedCameraAnchor.position +

cachedCameraAnchor.forward * 1f;

transitionCanvasTransform.rotation =

cachedCameraAnchor.rotation;

This dynamic positioning ensures the overlay remains visible during scene transitions
when camera references change, avoiding parenting to scene-specific GameObjects that

would be destroyed during SceneManager.LoadSceneAsync().

D.5 Scene Architecture and Persistence

The application comprises four navigable scenes sharing common systems through

persistent singletons. Table D.6 documents shared components across all scenes.

TABLE D.6 — Common Scene Components

Component Purpose

OVRCameraRig prefab VR camera and controller tracking
PromptConsole GameObject Conversational Ul and voice input
TimeController Simulation speed management
OrbitController Orbital physics (Hub only)
OrbitVisualizer Trajectory rendering (Hub only)

D.5.1 Singleton Persistence Mechanism

The SceneTransitionManager enforces singleton persistence through Unity’s Dont-

DestroyOnLoad () mechanism (line 58):

if (Instance == null) {
Instance = this;

DontDestroyOnLoad (gameObject) ;

This ensures the transition Ul and conversation context survive scene unloading. Sim-
ilarly, ConversationHistory persists across transitions, preserving the 10-exchange dia-

logue window.
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D.5.2 Asynchronous Scene Loading

Scene loading occurs through SceneManager.LoadSceneAsync() with deferred acti-
vation (line 252):

AsyncOperation loadOperation =
SceneManager .LoadSceneAsync (sceneName) ;

loadOperation.allowSceneActivation = false;

// Load scene in background...

// After 4-second logo animation:

loadOperation.allowSceneActivation = true;

This deferred activation prevents jarring scene pops, allowing smooth fade-out — logo

display — scene activation — fade-in transitions.

D.6 Performance Optimization

Performance optimization targets Quest 3’s mobile GPU constraints. Table D.7 doc-

uments the performance budget.

TABLE D.7 — Performance Targets for 90 Hz VR

Metric Target
Frame time budget 11.1 ms (90 Hz)
Target resolution (per eye) 1832x1920 pixels
Draw calls (Hub scene) < 100 per frame
Texture memory budget < 512 MB
Polygon count (visible) < 100k triangles

D.6.1 Rendering Optimizations

e Shared material instances: Reduce draw calls by batching geometry with identical

materials

e Texture compression: ASTC 6x6 for Ul elements, ASTC 4x4 for environment

textures

e Single-pass instanced stereo: Halves per-frame CPU work (both eyes in one draw
call)
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e Occlusion culling: Disabled (scenes are spatially compact, overhead exceeds benefit)

e Dynamic batching: Enabled for small meshes (< 300 vertices)

D.6.2 Memory Management

Scene file sizes optimized (62-85 KB per scene)

Texture atlasing for UI sprites

Audio streaming for voice synthesis (no large audio caching)

Persistent GameObjects minimized (only transition manager, conversation history)

D.6.3 Frame Time Breakdown

Table D.8 shows typical frame time allocation in the Hub scene (most complex).

TABLE D.8 — Frame Time Budget Breakdown (Hub Scene)

Component Time
Physics simulation 1.2 ms
Script execution 2.1 ms
Rendering (both eyes) 5.8 ms
VR compositor overhead 1.5 ms
Buffer margin 0.5 ms
Total 11.1 ms

This allocation maintains the 11.1 ms frame budget required for consistent 90 Hz VR

without reprojection artifacts (judder).



Appendix E - Complete Demonstration
Transcript

This appendix contains the complete transcript of the demonstration session analyzed
in Chapter 4. All dialogue has been transcribed from the video recording with light
copy-editing for readability. System messages (scene transitions, time acceleration) are
indicated with [SIM] annotations.

Cast / Agent Identities

e USER — Platform user (learner perspective)

¢ CAPCOM — Mission Control guide

ISS_CREW (Anastasia) — ISS astronaut specialist

HUBBLE_ENGINEER (Dr. Harrison) — Hubble Space Telescope specialist

VOYAGER_SPECIALIST (Karl) — Voyager deep-space mission specialist

e SIM — Non-diegetic system messages (routing, time control)

[Music] — Background music transitions during scene changes

Complete Interaction Transcript

Opening Sequence

NARRATOR (Cutscene): Above us, thousands of satellites trace perfect arcs—testaments
to gravity, velocity, and the geometry of motion. You’re about to join that tradition. I'll
guide the physics; you'll design the orbits. Together, we’ll explore how spacecraft navigate

the cosmos.
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Hub Arrival and Initial Interaction

CAPCOM: Welcome to Mission Control. You're floating above Earth. Use your
controllers to drift closer. Circle around and watch the continents slide beneath you,
oceans catching light, night falling while dawn breaks on the other side. I'm Capcom. We
can design orbits together, build trajectories, see how satellites actually move—or I can

route you to three specialists:

e a crew member aboard the ISS who lives this work every day,
e an engineer who built Hubble to see what we couldn’t from down here,

e and a space enthusiast who dreams about what Voyager means beyond everything.

When you're ready to speak, press A on your right controller. I’ll be listening. Enjoy the

view—that blue marble beneath you is home.

USER: Hey, Capcom. I see we have a satellite here. Is this the satellite that we can
build?

CAPCOM: [Music] Hello from Mission Control. Yes—this is your simulation satellite.
We can build orbits by setting circular or elliptical paths. Tell me either the altitude for

circular, or periapsis and apoapsis for elliptical, and I'll get it launched.

ISS Mission Consultation (First Visit)

USER: Cool. Let’s start with a circular orbit. I need an altitude—but what’s a good
altitude? What determines a good altitude?

CAPCOM: [Music] Connecting you to the ISS mission for real-world examples. Stand by.
SIM: [ROUTING — ISS_CREW]

ISS_CREW (Anastasia): [Music| Hello from the ISS. For circular LEO orbits, engineers
balance drag, launch energy, accessibility, and mission needs. The ISS flies around ~420
km—high enough to limit atmospheric drag so we don’t slow down too quickly, but not so
high that crew/cargo launches become inefficient. It’s also reachable from multiple launch

sites. Too low: frequent reboosts. Too high: launches get harder and more expensive.
USER: Would it be absurd to choose the same altitude as the ISS?

ISS_CREW (Anastasia): Not absurd at all-—quite sensible. ~420 km is a proven com-
promise. Many Earth-observation and crewed missions use similar altitudes for the same

reasons. You’'d be following decades of flight heritage.
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USER: Is the ISS circular?

ISS_CREW (Anastasia): Nearly. The path is close to circular with small variations (drag,
gravity field). We keep it tight with periodic reboosts. Near-circular simplifies rendezvous

and ops.
USER: What was the altitude again? Please route me back to the hub.
ISS_CREW (Anastasia): ~420 km. Handing you back. Safe travels.

SIM: [RETURN — CAPCOM]

Creating Circular Orbit

USER: I'll build a circular orbit at 422 km.

CAPCOM: Copy. Circular orbit set at 422 km, inclination 0° (equatorial). Orbital speed
~7.66 km/s—like the ISS, but over the equator.

USER: Can I choose the speed?

CAPCOM: In this sim, speed is derived from altitude by physics. At 422 km, you need
~7.66 km/s for a stable circular orbit. If you want a different speed, pick a different
altitude.

ISS Mission Consultation (Second Visit - Orbital Period)

USER: How long does one lap take? It looks fast, but Earth is massive.
CAPCOM: Routing you to the ISS for orbital period context.
SIM: [ROUTING — ISS_CREW]

ISS_CREW (Anastasia): At ~420 km, the ISS completes a lap in ~92.8 minutes—about
15 orbits/day. Higher altitude — slower speed — longer period. That’s why we see a

sunrise/sunset ~every 45 minutes.
SIM: [RETURN — CAPCOM]

USER: With our current orbit (~92 minutes), can we speed up the simulation so I can

see it go around?
CAPCOM: Time acceleration: 10x. You’'ll see the ~92-minute trip much faster.

SIM: [TIME_WARP 10x]
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Hubble Mission Consultation (Elliptical Orbits)

USER: Great. I built a circular orbit. What’s an elliptical orbit?
CAPCOM: Perfect question for Hubble—routing.
SIM: [ROUTING — HUBBLE_ENGINEER|

HUBBLE_ENGINEER (DR_HARRISON): [Music| Circular means constant distance
and speed—Iike Hubble (=540 km) for steady imaging and predictable servicing. El-
liptical stretches the path: closer at periapsis (faster), farther at apoapsis (slower). Some
science missions pick elliptical to linger where conditions are best or to avoid interference

(e.g., high apogee above the radiation belts).
USER: Why choose elliptical if circular is simpler?

HUBBLE_ENGINEER (DR_HARRISON): To optimize time in a region. Example:
Chandra uses a highly elliptical orbit to spend long stretches far from Earth’s radiation

belts for cleaner X-ray observations. Trade-off: more complex tracking/operations.

SIM: [RETURN — CAPCOM]

Creating Elliptical Orbits

USER: Back to Mission Control so I can build one.
CAPCOM: You're back at the Hub.
USER: Please build an elliptical orbit—anything interesting so I can compare.

CAPCOM: Elliptical orbit set: periapsis 400 km, apoapsis 2,000 km, inclination 0°. Watch

it speed up near Earth and slow down far away.

USER: Can we run at maximum sim speed?

CAPCOM: Time acceleration: 100x. Ellipticity will be very clear.
SIM: [TIME_WARP 100x]

USER: Make it more elliptical; it still looks circular.

CAPCOM: Roger. New orbit: periapsis 200 km, apoapsis 1,000 km, inclination 0°. The

speed contrast will be much more dramatic.

USER: Speed to maximum... oh, it already is.
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CAPCOM: Confirmed—100x time. Enjoy the fast-forward view.

USER: Wow—huge difference between near and far.

Voyager Mission Consultation (Escape Trajectories)

USER: For deep-space missions, I assume there aren’t circular orbits at all. Is every-

thing elliptical?
CAPCOM: Routing to Voyager for escape-trajectory talk.
SIM: [ROUTING — VOYAGER_SPECIALIST]

VOYAGER_SPECIALIST (Karl): Great question. To leave Earth, you don’t stay in an
Earth orbit. Voyager 1 began in a near-circular parking orbit briefly, then received a final
boost to a hyperbolic escape trajectory—no longer bound to Earth. Satellites around
Earth use circular or elliptical orbits to remain nearby; escape missions transition from
a staging orbit to hyperbolic and head out—past Earth, past the Sun’s planets, toward

interstellar space.
USER: So it’s like breaking free from gravity?

VOYAGER_SPECIALIST (Karl): Exactly. Think of it as climbing out of Earth’s grav-
itational well. Circular and elliptical orbits stay in the well, perpetually falling around
Earth. A hyperbolic trajectory has enough energy to climb out completely. Voyager didn’t

just orbit—it escaped.
USER: How did they actually do it?

VOYAGER_SPECIALIST (Karl): Voyager launched from Earth, first reaching a tempo-
rary parking orbit around 160-200 km. Then, at the optimal moment, the upper stage
fired—adding enough velocity to exceed escape speed. That burn transitioned the tra-
jectory from elliptical to hyperbolic. Once beyond Earth’s sphere of influence, Voyager’s
path was governed by the Sun’s gravity, heading toward Jupiter for the first gravitational

assist.
USER: That’s incredible. It’s really leaving everything behind.

VOYAGER_SPECIALIST (Karl): Past Earth, past the Sun’s planets, toward interstellar
space. Voyager carries humanity’s first message to the cosmos. The golden record, the
images, the sounds of Earth—all riding on a hyperbolic trajectory that will never return.

It’s physics, yes, but it’s also a statement of who we are and what we dream.
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End of Recorded Session

[Demonstration recording concludes. User remains in Voyager Mission Space, continuing

exploratory dialogue.|
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