
IEA-P – DEPARTAMENTO DE PROJETOS
(PROJECT DEPARTMENT)

ARQUITETURA CONCRETA

2

3

4

MMMF

Realized Architecture

Conceptual Alternatives

Systemic Intervention

Context Analysis

System Analysis

Logical Architecture

Physical
Architecture

Operational
Analysis

Solution Neutral
Architecture

Design Architecture

M
ul

ti
le

ve
l a

n
d

M
u

lt
ip

ha
se

Formalized Needs

System Element Requirements

Flowed-down Requirements

Seed

Problem

Solution

PNOP

NOP

ROP

RTLI

DCA-400-6

Soft
Operational

Research

Problem
Structuring

Methods

Multi Criteria
Decision
Analysis

Problem
Simulation

Concept
Simulation

Hard
Operational
Research

Product
Simulation

Problem Framing

Ideation

SIL

PIL

SIL

PIL

SIL

PIL

HIL

Specific
Discipline
Analysis

Concept
Simulation

SIL

PIL

Example

5

6

Realized Architecture

Physical
Architecture

Design Architecture

Flowed-down Requirements RTLI

Product
Simulation

SIL

PIL

HIL

Specific
Discipline
Analysis

7

8

9

Concurrent Engineering

10

Things started to speed-up

11

12

Winner, Robert I., Pennell, James P., Bertrand, Harold E., and Slusarczuk, Marko M. G. (1991).

"The Role of Concurrent Engineering in Weapons System Acquisition", Institute for Defense
Analyses Report R-338, December 1988, p v.

https://apps.dtic.mil/dtic/tr/fulltext/u2/a203615.pdf

Parallelization/INTEGRATION of work

13

Concurrent engineering: an overview for Autotestcon | IEEE Conference Publication |
IEEE Xplore

The Role of Reduced Latency in Integrated Concurrent Engineering | Center for
Integrated Facility Engineering (stanford.edu)

https://ieeexplore.ieee.org/document/81104
https://ieeexplore.ieee.org/document/81104
https://cife.stanford.edu/role-reduced-latency-integrated-concurrent-engineering
https://cife.stanford.edu/role-reduced-latency-integrated-concurrent-engineering

2001 – Agile manifesto

• We follow these principles:
• Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.

• Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.

• Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

• Businesspeople and developers must work together daily throughout
the project.

• Build projects around motivated individuals. Give them the
environment and support they need and trust them to get the job
done.

• The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

• Working software is the primary measure of progress.

• Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

• Continuous attention to technical excellence and good design
enhances agility.

• Simplicity--the art of maximizing the amount of work not done--is
essential.

• The best architectures, requirements, and designs emerge from self-
organizing teams.

• At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

14

Manifesto for Agile Software Development (agilemanifesto.org)

https://agilemanifesto.org/

15

Modern concurrent engineering

16 Bidirectional Graphical Modelling Supporting Concurrent Spacecraft Design | Semantic Scholar

https://www.semanticscholar.org/paper/Bidirectional-Graphical-Modelling-Supporting-Design-Schaus-M%C3%BCller/2e0d9124ebd9ee4a38260756ac1850093dd4737d

17 (PDF) Concurrent Engineering Knowledge Management Architecture (researchgate.net)

https://www.researchgate.net/publication/225024184_Concurrent_Engineering_Knowledge_Management_Architecture

ESA - What is the CDF?

https://www.esa.int/Enabling_Support/Space_Engineering_Technology/CDF/What_is_the_CDF

19

Multiple spreadsheet through a shared bd

(joke) motto

20

21

From doc to model

•Collaborative work (SystemToSubsystem / T4C)

•Data-base of solutions (reuse) (Libraries)

• Strong Interface Definition/Management

•Optimization (man-made / automatic)

•Coupled analysis – Simulation (P4C and other connectors)

•Model has SEVERAL THOUSANDS of advantages, however
the spreadsheet metaphor is easy and known.

Challenges – co-engineering

22

PHYSICAL ARCHITECTURE

23

24

WHAT IS IN THE PHYSICAL
ARCHITECTURE (PA)?

25

Physical Architecture

“how the system will be built”

• This perspective has the same objective as the logical architecture,
except that it defines the finalized architecture of the system, as it
should be completed and integrated. It adds the functions
required by the implementation and technical choices and reveals
the behavioral components that perform these functions. These
behavioral components are then implemented using host
implementation components that offer them the necessary
material resource.

• Defines the solution at a sufficient level of detail to specify the
developments and acquisitions of all subsystems (or components)
to be implemented, and to define and orientate the system
integration, verification and validation (IVV) phases.

26

• It is often at this level only that choices and constraints
are introduced related to implementation and production
technologies, to existing elements to be re-used.

•Any ambiguities or inaccuracies that could still exist in the
logical architecture (LA), if they did not impact its
structuring, should this time be resolved, in order to
constitute clear development contracts for the identified
components.

•PA is the privileged place of co-engineering with
subsystem engineering and software or hardware
components.

27

• to define the structuring principles of the architecture and
behavior;

• to detail and finalize the expected system behavior;

• to build and rationalize one or more possible system
architectures;

• to select, complete and justify the system architecture
retained.

28

The main activities to be undertaken for the
definition of the finalized PA

Definition of the structuring principles of the
architecture and behavior

• The major objective of the PA is to minimize complexity
through rationalizing.
• One of the most used means of rationalization consists of

reducing diversity and heterogeneity within the solution, by
searching for similarities and therefore possible architecture
invariants (sometimes called “patterns”) that can be applied
more than once in the same manner – or configurable.

• Another classic way to overcome complexity is based on the
separation of concerns and their containment within parts of
the architecture as separate as possible from each other.

29

Detail and finalization of the expected system
behavior

•Define the expected behavior of the system, to a level of
detail and validation enough so that each of its
components can be implemented (or selected and
purchased), without any further risk or major questioning;
this definition must of course demonstrate compliance
with constraints, especially nonfunctional constraints, by
which the system will have to abide when being used
under operational conditions.

30

• In particular, the finalized behavior should not necessarily
be considered as a simple refinement of that defined in
the LA. The finalization of the chosen behavior in fact
often constitutes a re-designing, which must result from
the comparison between the principle behavior of the LA,
and the implications of the principles chosen in the PA:
technological choices and adoption of standards,
previous structuring principles, etc.

31

Construction and rationalization of one or more
possible system architectures
• This step is intended to define one or more solutions reflecting the

structuring principles defined in the LA, the previous finalized
behavior, satisfying the expected non-functional constraints and
applying technology and reuse choices decided in accordance with
the structuring principles adopted.

32

• In the simplest cases, or in systems with
a physical or electrical dominant, the
exchange items are often simple in their
description and usage at this
engineering and modeling level.
However, for more complex exchange
items, involving large numbers of
exchange contents elements, it is
desirable to be able to structure a list of
exchange items that can be extensive,
by grouping them by type of service
achieved, for example. This is the role of
the concept of an interface (also mainly
present in software design).

33

• The PA complements this behavioral description by
way of the definition of implementation
components, or hosting physical components,
containing behavioral components and forming the
infrastructure of the system; the behavioral
components are deployed on these host
components, which provide necessary resources for
their behavior and hardware vectors (links) for their
communications. It may thus consist of high-
performance computers, resources for digital or
analog processing, mechanical systems,
evaporators, furnaces, chemical reactors, etc.

• Hosting physical components are themselves
connected by physical links, reflecting the media
that channel exchanges between behavioral
components (a cabled network, a satellite link, a
pipe or a mechanical shaft, for example).

• The same rationalization processes have to be
performed for hosting physical components as for
the behavior and behavioral components, in
compliance with the established structuring
principles.

34

Selection, completion and justification of the
system architecture
• Finalize the choices among potential alternatives, and verify

that the retained alternative satisfies, possibly by means of
an acceptable trade-off, all of the needs and constraints that
have been imposed thereon.

• For example, the implementation resources available may not
be sufficient to support an expected behavior or associated
properties (computational load too high for a given process in
computers supporting it, temperature and pressure too high
for a given pipe, etc.). This will lead to a redesigning of the
architecture, including a redecomposition and a different
distribution of behavioral components, or the use of other
implementation resources (more powerful computers, more
robust pipes).

35

define the structuring
principles of the
architecture and
behavior;

Factors impacting or constraining the definition of the architecture, as well as
the viewpoints and structuring design choices mentioned earlier, equally apply
to this level of architecture and are to be taken into account in a similar way.

detail and finalize the
expected system
behavior;

define the expected behavior of the system, to a level of detail and validation
enough so that each of its components can be implemented (or selected and
purchased), without any further risk or major questioning

build and rationalize
one or more possible
system architectures

define one or more solutions reflecting the structuring principles defined in the
LA, the previous finalized behavior, satisfying the expected non-functional
constraints and applying technology and reuse choices decided in accordance
with the structuring principles adopted.

select, complete and
justify the system
architecture retained.

finalize the choices among potential alternatives, and verify that the retained
alternative satisfies, possibly by means of an acceptable trade-off, all of the
needs and constraints that have been imposed thereon.

36

SUMMARY

37

38

39

40

https://www.slideshare.net/HelderCastro3/mbse-with-arcadia-methodpdf-25666409641

https://www.slideshare.net/HelderCastro3/mbse-with-arcadia-methodpdf-256664096

https://www.slideshare.net/HelderCastro3/mbse-with-arcadia-methodpdf-25666409642

https://www.slideshare.net/HelderCastro3/mbse-with-arcadia-methodpdf-256664096

https://www.slideshare.net/HelderCastro3/mbse-with-arcadia-methodpdf-25666409643

https://www.slideshare.net/HelderCastro3/mbse-with-arcadia-methodpdf-256664096

PHYSICAL ARCHITECTURE
CONCEPTS

44

•At this level, the main concepts proposed by Arcadia are
similar to those of the Logical Architecture: Physical
Function, Functional Exchange, Physical Component,
Physical Actor, etc. However, there are some additional
concepts, notably:

45

•Behavior Physical Component: Physical Component
tasked with Physical Functions and therefore carrying out
part of the behavior of the System (for example software
component, data server, etc.);

46

•Node (or Implementation) Physical Component: Physical
Component that provides the material resources needed
for one or several Behavior Components (for example
processor, router, OS, etc.).

47

•Physical Port: non-oriented port that belongs to an
Implementation Component (or Node). The structural
port (Component Port), on the other hand, has to belong
to a Behavior Component;

48

•Physical Link: non-oriented material connection between
Implementation Components (or Nodes). The
Component Exchange remains a connection between
Behavior Components. A Physical Link allows one or
several Component Exchanges to take place (for example
Ethernet cable, USB cable, etc.);

49

•Physical Path: organized succession of Physical Links
enabling a Component Exchange to go through several
Implementation Components (or Nodes).

50

51

PHYSICAL ARCHITECTURE
DIAGRAMS

52

53

Initialization and automated update of the physical functions
according to the logical functions

The transition tools create a first 1-1 traceability mapping between
Physical Architecture and Logical Architecture. Use dedicated
traceability matrices to modify the traceability relationships.

Enrich and details the functional breakdown with new physical
functions.

Describe the data flows between physical functions and identify
specific functional chains.

The initialization and automated updated of the physical actors can be
automatically performed according to logical actors.

Define the physical components. A physical component is a physical
representation of an entity in the system (hardware, software,
firmware, personnel, facilities, data, materials, services and
processes). It is in charge of the implementation of one or several
logical components. A physical component can be Node or Behavior.

54

The behavioral physical components are responsible for implementing
the physical functions. Manage these allocations using an architecture
diagram and deduce component exchanges implementing the
functional exchanges.

Manage the deployment of behavior components on node
components and deduce physical links and paths. Create dataflows
scenarios to illustrate functional exchanges between the components.

Delegate each logical interface to one physical component. Create new
physical interfaces between components.

Specify the dynamical behavior of the physical components by
completing the interaction sequences coming from the Logical
Architecture. The enrichment of the interaction sequences and the
identification of the new physical interfaces are two very tight and
iterative activities.

The scenario refinement process is iterative, each update on a source
can be automatically propagated to the target.

55

Final Considerations

SOME THOUGHTS

•Physical architecture answers:
• “how the system will be built”

• In the physical architecture the system choices are
concretized.

• Focus on technological trades that implements the
functions

• Focus in the realize the “to-be”

•Maps the technologies into the designed functions.

57

• Fazer a etapa da formalização do sistema construído

• Apresentar como o sistema logístico vai ser construído.

• Apresentar o modelo da arquitetura final:
• Características mínimas: realizar 2 nós com 1 comportamento em cada

(mínimo). Anexar os comportamentos vindos da LA. Indicar como o
sistema foi “totalmente construído / entregue pelo fabricante”.

• Extra-fun: Gerar um doc com no mínimo uma arquitetura de cada
camada (AO-PA), trazer o título do diagrama e o diagrama
automaticamente.

Atividades para a próxima aula

58

Realized Architecture

Physical

Architecture
Design Architecture

Flowed-down Requirements RTLI

Product

Simulation

SIL

PIL

HIL

Specific
Discipline
Analysis

Document Generation
https://www.m2doc.org/

59

• O projeto M2Doc fornece a geração de documentos do Word
(arquivos .docx) com base em um modelo de documento e
modelos EMF.

• A abordagem geral consiste na criação de modelos no formato
OOXML em que a criação de texto estático se beneficia dos
recursos WYSIWYG do Microsoft Word. Partes dinâmicas são
inseridas usando um vocabulário dedicado de código de
campos OOXML.

• Os campos são usados principalmente para inserir números de
página, referências, etc. O M2Doc faz uso de diretivas de
geração de documentação. Isso permite uma separação total
entre o documento e as diretivas M2Doc.

60

conceitos

61

62

•A linguagem de modelo faz um uso extensivo da Acceleo
Query Language, que fornece uma linguagem de consulta
de modelo.

•Os modelos M2Doc podem ser validados. Se forem
encontrados erros, um modelo anotado será produzido
descrevendo os problemas encontrados.

63

Princípios

•Definição dos pontos de entrada do modelo.

• Extração de informações navegando no modelo.

64

Princípios

65

• Template user: que já possuem o modelo e desejam gerar o
documento.
• Edita modelos e quer produzir documentos

• Template developer: que querem criar seu próprio modelo
• Templates podem ser usados em diferentes documentos.
• Varios templates podem ser usados em um modelo.
• Conhece a estrutura de navegação AQL

• Integrator (Meta-model Expert): que desejam fornecer
geração de documentos em seu próprio projeto usando
M2Doc.
• Cria serviços AQL para criadores de templates.

66

Não é fácil e necessita de pessoas específicas:

Básico de metamodelagem
https://www.eclipse.org/modeling/emf/

67

• EMF : Eclipse Modeling Framework
• Modelagem de dados Java e framework de integração

• Fornece a infraestrutura para realmente usar os modelos em
um aplicativo

• Facilmente acessível

• Open source – EPL licence
• Necessário conhecimento em Java
• Aliás também em UML, XML Schema

• Baseado em modelagem > geração de código

• Possibilita a produção rápida de modeladores

• Utiliza toda a facilidade trazida pelo Eclipse68

Metamodelagem

•Um modelo EMF é um conjunto de dados
• Conformação a um metamodelo
• Composto por objetos com propriedades e relações

• Serializado em um arquivo XMI

•Conceitos próximos aos do diagrama de classes UML
• Elements ~ Class
• Attributes
• References ~ Associations

69

Meta modelo

• Um link entre o mundo do desenvolvimento e o mundo da
modelagem
• Converte modelos em código e vice-versa
• Fornece toda a infraestrutura necessária de M / MM / M2M

• Gratuito
• Licença EPL
• Poucos pré-requisitos
• Pode operar no modo autônomo (sem acesso externo)

• Estabilidade
• Desenvolvido desde 2002
• No centro da infraestrutura do Eclipse

70

Benefícios

71
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/pa
ckage-summary.html

https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html

72 https://eclipsesource.com/blogs/tutorials/emf-tutorial/

https://eclipsesource.com/blogs/tutorials/emf-tutorial/

Acceleo Query Language

73

•A Acceleo Query Language (AQL) é uma
linguagem usada para navegar e consultar um
modelo EMF.

•O AQL como mecanismo de consulta é pequeno,
simples, rápido, extensível e traz uma validação
mais rica do que o interpretador MTL (Model to Text
Language)

•O interpretador AQL é usado no Sirius com o prefixo
«aql:»

74

introdução

• From a variable one can access field or
reference values using the . separator.

• With self being an instance
of Person, self.name returns the value of the
attribute name and self.father return the father
of the person.

• If the attribute or the reference is multi-valued,
then self.parents will return a collection.

• Calls can be chained, as
such self.parents.name will return a collection
containing the names of the parents.

• If one want to access the collection itself, then
the separator -> must be used, as
such self.parents.name->size() will return the
number of elements in the collection
whereas self.parents.name.size() will return a
collection containing
the sizes of each name.

75

•A noção de contexto
• Uma consulta AQL se aplica ao seu contexto (denotado por

“self”)

•A navegação está em conformidade com o metamodelo
usando a notação de pontos
• Acesso a referências e atributos
• Exemplo : aql:self.ownedSchemas.name
• No contexto de um Banco de Dados, recupere os nomes dos

esquemas de propriedade do banco de dados atual.

76

Sintaxe

• Outros exemplos de consulta
• aql:self.name in a Table context → Name of the Table

• aql:self.ownedTableElements.name in the context of

Table → Column names list

• aql:self.ownedTableElements→size() in the context of a

Table → Number of columns of the Table

• Elementos estáticos vs elementos dinâmicos
• aql:'Table_ ' + self.name in the context of a Table named

'Vehicle' → “Table_Vehicle”

• aql:’Prefixe' + self.name + ‘Sufixe' →
“PrefixeVehicleSufixe”

77

Sintaxe

•Disponível em Window > Show View > Interpreter

• Trabalha com representações do Sirius

•Mas também em todos os modelos EMF

•Muito útil para ajustar consultas

78

Estruturando as buscas: interpreter

https://www.eclipse.org/acceleo/documentation/

https://www.eclipse.org/acceleo/documentation/

(super) Pequeno exemplo...
https://www.m2doc.org/

80

•Primeiro você precisa baixar Capella.

•Quando o download estiver concluído, extraia o arquivo
baixado e execute o executável Eclipse na subpasta
Eclipse.

• INSTALLATION FOR CAPELLA 6.1.X
• https://s3-eu-west-1.amazonaws.com/obeo-

networkaggregation-releases/capella-
extensions/6.1.0_M2Doc3.3.0/full zip (M2Doc 3.3.0)

81

Instalação

https://s3-eu-west-1.amazonaws.com/obeo-networkaggregation-releases/capella-extensions/6.1.0_M2Doc3.3.0/full/org.obeonetwork.capella.update.full.zip

instalando O M2DOC

82

Abrindo o exemplo

83

Arquivos que são gerados

Templates de textos

84

Alt+f9

ctrl+f9

	Default Section
	Slide 1: Arquitetura concreta
	Slide 2
	Slide 3
	Slide 4: MMMF

	Untitled Section
	Slide 5: Example
	Slide 6
	Slide 7
	Slide 8
	Slide 9

	CONCURRENT ENGINEERING
	Slide 10: Concurrent Engineering
	Slide 11: Things started to speed-up
	Slide 12
	Slide 13: Parallelization/INTEGRATION of work
	Slide 14: 2001 – Agile manifesto
	Slide 15: Modern concurrent engineering
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Multiple spreadsheet through a shared bd
	Slide 20: (joke) motto
	Slide 21: From doc to model
	Slide 22: Challenges – co-engineering

	PHYSICAL ARCHITECTURE
	Slide 23: PHYSICAL ARCHITECTURE
	Slide 24
	Slide 25: WHAT IS IN THE PHYSICAL ARCHITECTURE (PA)?
	Slide 26: Physical Architecture
	Slide 27
	Slide 28: The main activities to be undertaken for the definition of the finalized PA
	Slide 29: Definition of the structuring principles of the architecture and behavior
	Slide 30: Detail and finalization of the expected system behavior
	Slide 31
	Slide 32: Construction and rationalization of one or more possible system architectures
	Slide 33
	Slide 34
	Slide 35: Selection, completion and justification of the system architecture
	Slide 36: SUMMARY
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: PHYSICAL ARCHITECTURE CONCEPTS
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: PHYSICAL ARCHITECTURE DIAGRAMS
	Slide 53
	Slide 54
	Slide 55

	Untitled Section
	Slide 56: Final Considerations
	Slide 57: SOME THOUGHTS
	Slide 58: Atividades para a próxima aula

	Untitled Section
	Slide 59: Document Generation
	Slide 60: conceitos
	Slide 61
	Slide 62
	Slide 63: Princípios
	Slide 64: Princípios
	Slide 65
	Slide 66: Não é fácil e necessita de pessoas específicas:
	Slide 67: Básico de metamodelagem
	Slide 68: Metamodelagem
	Slide 69: Meta modelo
	Slide 70: Benefícios
	Slide 71
	Slide 72
	Slide 73: Acceleo Query Language
	Slide 74: introdução
	Slide 75
	Slide 76: Sintaxe
	Slide 77: Sintaxe
	Slide 78: Estruturando as buscas: interpreter
	Slide 79
	Slide 80: (super) Pequeno exemplo...
	Slide 81: Instalação
	Slide 82: instalando O M2DOC
	Slide 83: Abrindo o exemplo
	Slide 84

