
IEA-P – DEPARTAMENTO DE PROJETOS
(PROJECT DEPARTMENT)

Concepts
[TE-265][2024]

Prepared by Prof. Christopher Shneider Cerqueira

2

3

4

MMMF

Realized Architecture

Conceptual Alternatives

Systemic Intervention

Context Analysis

System Analysis

Logical Architecture

Physical
Architecture

Operational
Analysis

Solution Neutral
Architecture

Design Architecture

M
ul

ti
le

ve
l a

n
d

M
u

lt
ip

ha
se

Formalized Needs

System Element Requirements

Flowed-down Requirements

Seed

Problem

Solution

PNOP

NOP

ROP

RTLI

DCA-400-6

Soft
Operational

Research

Problem
Structuring

Methods

Multi Criteria
Decision
Analysis

Problem
Simulation

Concept
Simulation

Hard
Operational
Research

Product
Simulation

Problem Framing

Ideation

SIL

PIL

SIL

PIL

SIL

PIL

HIL

Specific
Discipline
Analysis

Concept
Simulation

SIL

PIL

IDEATION USING OPM

5

Context

• Sistemas entregarão um valor para as partes
interessadas.
•O valor vem com um forma (elementos de

arquitetura e propriedades) e com funções
(ações e eventos)

• Sistemas Complexos possuem múltiplas
funções.

•Os Engenheiros de Sistemas devem
identificar e organizar essas funções,
gerenciando a complexidade.

SY
ST

EM
S

A
RC

H
IT

EC
TU

R
E

U
SI

N
G

 O
PM

6

SY
ST

EM
S

A
RC

H
IT

EC
TU

R
E

U
SI

N
G

 O
PM

7

OPM Function

SY
ST

EM
S

A
RC

H
IT

EC
TU

R
E

U
SI

N
G

 O
PM

8

OPM Funcion + Form (instrument)

SY
ST

EM
S

A
RC

H
IT

EC
TU

R
E

U
SI

N
G

 O
PM

9

SY
ST

EM
S

A
RC

H
IT

EC
TU

R
E

U
SI

N
G

 O
PM

10

SY
ST

EM
S

A
RC

H
IT

EC
TU

R
E

U
SI

N
G

 O
PM

11

SY
ST

EM
S

A
RC

H
IT

EC
TU

R
E

U
SI

N
G

 O
PM

12

SY
ST

EM
S

A
RC

H
IT

EC
TU

R
E

U
SI

N
G

 O
PM

13

Solution-Neutral (Solution)
Chapter 7 - 8

14

Solution-neutral questions

15

• This solution is actually sold
as a household product,
complete with a thin,
hollow needle for piercing
the cork and a manual air
pump.
• Alternatively, the waiter at

fine dining restaurants
(which I don't go to)
sometimes uses a fork-like
device to pull the sides
(shear) of the cork.

EX.: Concept of remove a cork from a wine flask.

16

• Solution-neutral reason is to fnid the function of a system
declared without reference to how the function is
achieved (should only indicate the problem).

•Poor system requirements often contain clues about a
solution, intended function or form, and these clues can
lead the architect to a narrower set of potential options.

•Use solution-neutral functions whenever possible and
use the hierarchy of solution-neutral statements to allow
for better exploration of the problem.

Solution Neutral reasoninng

17

Solution-Neutral

Intent

Function

Form

SY
ST

EM
S

A
RC

H
IT

EC
TU

R
E

U
SI

N
G

 O
PM

18

Identify the specific operand, whose
alteration will satisfy the functional
intent;
identify the beneficial attribute of the
specific operand whose change is
associated with the value, and so on.

Examples

19

SY
ST

EM
S

A
RC

H
IT

EC
TU

R
E

U
SI

N
G

 O
PM

20

Removing a Wine Bottle Cork

SY
ST

EM
S

A
RC

H
IT

EC
TU

R
E

U
SI

N
G

 O
PM

21

Selectable Options

SY
ST

EM
S

A
RC

H
IT

EC
TU

R
E

U
SI

N
G

 O
PM

22

Example of options

23

24

25

Solution domain

• Systems Engineering is concerned with the whole
problem and the whole solution, including how the
“intervention system” will interact with its environment
as part of a larger system when it is deployed, and all the
enabling systems and services required to establish and
maintain system effectiveness throughout its lifecycle
until eventual satisfactory disposal.

•We need to consider the full lifecycle of the entire
solution, including all the enabling systems that go along
with the system of interest

T2 – Consider the whole problem, the whole
solution and the full lifecycle

• viewing the problem as a system,
• understanding how the interdependencies between the

elements in the problem space create the “problem
symptoms”, and how the “intervention system” might alleviate
the problem symptoms
• understanding stakeholder interactions and

interdependencies and establishing overall agreed purpose
and success criteria
• anticipating and aiming to minimize potential adverse or

unintended consequences of the intervention system
• scanning for and early detection of anomalous behavior and

unintended consequences – not all can be anticipated
beforehand

PROBLEM SPACE

• In the solution space, the SE approach involves
• identifying potential solution approaches,
• selecting a suitable approach based on evidence and expert

judgement, guided by purpose, and taking into account the
levels of risk, uncertainty and change;
• defining the solution, the component parts and their

properties, and the required enabling products and services to
design, make, test, deploy, use, assess, support, evolve and
eventually retire and dispose of the system

Solution space

30

Essa fase é feita por estruturadores de arquitetura...
Exemplo é o left field do jpl

https://www.jpl.nasa.gov/thestudio

https://www.jpl.nasa.gov/thestudio

31

32

33

34

DECISION MATRIX – PUGH’S METHOD

•Means of scoring each
alternative concept on its
ability to meet a set of
criteria (MoEs).

•By comparing the scores,
you develop insight into
the best alternatives and
the most useful
information to make your
decision.

35

Conceptual Alternatives

Logical Architecture
Solution Neutral

Architecture

System Element Requirements

Flowed-down Requirements

ROP

RTLI

DCA-400-6

Concept
Simulation

Ideation
SIL

PIL

INTENTION EXPLORATION

Ballon Aircraft Satellite Gossip

TimeFrameOfNe
wInformation

.4 - + + 0

DetectionDelay .6 + - + 0

Total 0 0 2

Weighted .6 .4 1

trading

Conceptual Alternatives

Logical Architecture
Solution Neutral

Architecture

System Element Requirements

Flowed-down Requirements

ROP

RTLI

DCA-400-6

Concept
Simulation

Ideation
SIL

PIL

LOGICAL ARCHITECTURE

42

43

WHAT IS IN THE LOGICAL
ARCHITECTURE (LA)?

44

Logical Architecture

“How the system will work to meet expectations”
“How the system will work to fulfill expectations”

• In response to the need expressed by the two previous
perspectives, it enables the first major choices of solution
design, first via an internal functional analysis of the system: it
describes the functions to be performed and assembled in
order to implement the service functions identified in the
previous phase. It continues with the identification of the
operational components implementing these solution
functions, integrating the non-functional constraints that we
chose to be addressed at this level.

45

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

• The level of Logical Architecture aims to identify Logical
Components inside the System (“how the system will
work to fulfill expectations”), their relations and their
content, independently of any considerations of
technology or implementation.

•Next an internal functional analysis of the system must
be carried out: the subfunctions required to carry out
the System Functions chosen during the previous phase
must be identified; next, a split into Logical Components
to which these internal subfunctions will be allocated
must be determined, all the while integrating the
nonfunctional constraints that have been chosen for
processing at this level

46

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

• The definition of the LA (an activity often – and wrongly –
designated “logical architecture” for convenience)
consists mainly of a comparison between the needs
expressed in previous perspectives, a functional analysis
describing the system behavior chosen to satisfy
requirements, and a structural analysis intended to
identify the components that will constitute the system,
taking the chosen constraints and structuring principles
into account.

• The LA is therefore a first general vision, moderately
detailed, somehow an abstraction, of what the
architecture of the system will be

47

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

The main activities for the definition of the
logical principle architecture are as follows:

• to define the factors impacting the architecture and
analysis viewpoints;

• to define the principles underlying the system behavior;

• to build component-based system structuring
alternatives;

• to select the architecture alternative offering the best
compromise.

48

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

Definition of the factors impacting the
architecture and analysis viewpoints

•Any properly designed architecture satisfies several
expectations and constraints of various kinds, which
constrain and influence or even direct its definition, and
whose satisfaction should be verified as early as possible
to minimize possible subsequent resumption costs.

• These factors that constrain the architecture depend largely on each domain, and each profession. As examples we
mention: delivered services and costs of course, expected performance, safety of operations, privacy, ease of
maintenance, life duration, energy or logistical footprint, availability, product policy, scalability, but also more
“aesthetic” considerations such as customer satisfaction.

49

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

• For each factor previously identified, the associated
constraints (especially nonfunctional and performance
ones), which can be applied to the needs and the
solution, must be expressed and quantified by metrics;
each candidate architecture will be analyzed according
to this viewpoint, to verify that good practice is correctly
followed.

• These decisions reflect know-how, the craft, in addition to the creativity of the engineering team, and will guide the
emergence of different alternatives as well as their comparison.

• Imposed factors and design choices must be categorized by importance or priority, in order to be able to arbitrate
between them when they result in antagonistic properties, or when certain constraints will have to be released to
find an acceptable compromise.

50

• In the case of the traffic control system, the first impact
factor is obviously the safety of goods and people. An
additional factor involves system operators, their training
and their required skills, the scope of their responsibility
and the role that must be assigned to them. We should
also take into account factors such as environmental
conditions, life duration, constraints on logistics and
maintenance.
• In the case of the traffic control system, let us mention the

required reliability rate and the system failure probability,
the capability to be able to operate in the event of partial
failure of certain subsystems; the maximal eligible number
of operators; extreme temperature ranges, humidity,
resistance to possible salt sprays; etc.

51

Definition of the behavior principles of the
system
• The objective is to formalize the principles of the desired behavior of the system, and to non-functional,

to which it has the responsibility to respond during its operation under operational conditions.

• A common mistake consists of considering the behavior of the
solution as a simple refinement of the previous functional
expression of need at a finer level of detail. The solution design
is much more than that: it is a take into account the
constraints, namely “creative” definition effort of a behavior
that meets the need (and that does not refine it), detailing the
processes and steps starting from the solicitations of the
system, up to the provision of services, results or outputs,
taking into account design decisions, mainly guided by the
factors and constraints identified previously.

52

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

•1 – identify and formalize need items captured. (tracing
to SA)

•2 – search for possible functions already in the LA that
could also play a role to solve the need. (minimize
functions)

•3 – verify function boundaries to achieve what is
expected of it.
• Scenarios / chains will add light to design decisions or to the

choice of product line.

•4 – build a complete and coherent global description
using the behavioral elements (scenarios/state machines)

53

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

Construction of component-based system
structuring alternatives
• This step should reveal a number of

principle solutions, describing the
preliminary structure of the system,
built on the basis of the previous behavior,
incorporating both non-functional
associated constraints and the factors and
design choices underlying it.

• The system is broken down into principle
components called logical components.
The term “component” is understood here
in the general sense, as a constituent of
the system at this level; it can later be
implemented as a subsystem (or several),
equipment, one or more mechanical parts
or assemblies, one or more electronic
cards, a software program itself eventually
distributed or even a human contributor.

54

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

• The component building
process consists of grouping
together or segregating the
behavior functions previously
defined, according to the
constraints and criteria
imposed, in grouping sets that
thus constitute the
components. These latter can
themselves be structured by
subcomponents, according to
the same types of criteria if
necessary.
• It is recommended to submit

each choice of functional
grouping to the multi-viewpoint
analysis

55

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

• The (preliminary) definition of interfaces
between components (or with external actors)
can be done at this level (or be postponed until
the definition of the physical architecture): they
are built based on the functional exchanges
linking the functions allocated to these
components or actors, and exchanges data (and
exchange elements) that these exchanges
convey; data and exchanges are mainly grouped
according to semantic proximity or usage
considerations.

• The actual exchanges between components are
also achieved by way of grouping functional
exchanges; combined with the capability to hide
subcomponents in order to consider those of
first level only, this also constitutes a level of
synthesis or even of abstraction able to hide the
complexity of functional exchanges, and to
reason on several levels of detail.

56

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

• This static definition of interfaces
most often must be accompanied by
a dynamic definition, by creating
scenarios at the boundaries of the
components, and if necessary, state
and modes machines associated
with each contributor to exchanges
and managing this dynamics of
interfaces.
• Furthermore, states and modes can

be defined and allocated to
components, based on those
implemented at the system level in
the previous behavioral functional
analysis, and consistent with them.

57

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

Selection of the architecture alternative offering
the best trade-off
• The purpose of this activity is to find among previous candidate

architectures the one that represents the best trade-off with
respect to all viewpoints under consideration, and to justify its
compliance to the need.

• Each alternative has in principle been evaluated based on the
major viewpoints impacting it – and their relative importance –
during its definition; the inadmissible nonconformities have
been eliminated, but as the evaluation is rarely binary, the
point is therefore now to compare the “merits” of each
candidate in a multi-criteria quantitative analysis, of which
previously identified viewpoint analyses, priorities and metrics
are key elements.

58

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

Define the factors impacting
the architecture and analysis
viewpoints

satisfies a number of expectations and constraints of various
kinds, which constrain and influence or even direct its definition,
and whose satisfaction should be verified as early as possible to
minimize possible subsequent resumption costs.

Define the principles
underlying the system
behavior

non-functional, to which it has the responsibility to respond
during its operation under operational conditions

Build component-based
system structuring
alternatives

The system is broken down into principle components called
logical components. The term “component” is understood here
in the general sense, as a constituent of the system at this level;

Select the architecture
alternative offering the best
compromise

find among previous candidate architectures the one that
represents the best trade-off with respect to all viewpoints under
consideration, and to justify its compliance to the need.

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

59

Arcadia method – LOGICAL ARCHITECTURE
analysis summary

60

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

61

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

62

W
H

AT
 IS

 IN
 T

H
E

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
(L

A
)?

https://www.slideshare.net/HelderCastro3/mbse-with-arcadia-methodpdf-25666409663

https://www.slideshare.net/HelderCastro3/mbse-with-arcadia-methodpdf-256664096

https://www.slideshare.net/HelderCastro3/mbse-with-arcadia-methodpdf-25666409664

https://www.slideshare.net/HelderCastro3/mbse-with-arcadia-methodpdf-256664096

https://www.slideshare.net/HelderCastro3/mbse-with-arcadia-methodpdf-25666409665

https://www.slideshare.net/HelderCastro3/mbse-with-arcadia-methodpdf-256664096

LOGICAL ARCHITECTURE
CONCEPTS

66

• Logical Component: structural element within the
System, with structural Ports to interact with the other
Logical Components and the external Actors. A Logical
Component can have one or more Logical Functions. It
can also be subdivided into Logical subcomponents;

67

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
CO

N
C

EP
TS

• Logical Actor: any element that is external to the System
(human or non-human) and that interacts with it (for
example Pilot, Maintenance operator, etc.).

68

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
CO

N
C

EP
TS

• Logical Function: behavior or service provided by a
Logical Component or by a Logical Actor. A Logical
Function has Function Ports that allow it to
communicate with the other Logical Functions. A Logical
Function can be subdivided into Logical subfunctions;

69

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
CO

N
C

EP
TS

• Functional Exchange: a unidirectional exchange of
information or matter between two Logical Functions,
linking two Function Ports;

70

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
CO

N
C

EP
TS

•Component Exchange: connection between the Logical
Components and/or the Logical Actors, allowing
circulation of the Functional Exchanges;

71

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
CO

N
C

EP
TS

72

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
CO

N
C

EP
TS

• Logical Scenario: dynamic occurrence describing the
interactions between Logical Components and Logical
Actors in the context of a Capability. It is commonly
represented as a sequence diagram, with the vertical axis
representing the time axis;

73

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
CO

N
C

EP
TS

• Functional Chain: element of the model that enables a
specific path to be designated among all possible paths
(using certain Functions and Functional Exchanges). This is
particularly useful for assigning constraints (latency,
criticality, etc.), as well as organizing tests;

74

LO
G

IC
A

L
A

RC
H

IT
EC

TU
R

E
CO

N
C

EP
TS

75

Functional chains with Arcadia and
Capella_ Concepts and
exploitation

LOGICAL ARCHITECTURE
DIAGRAMS

76

LO
G

IC
A

L
A

R
C

H
IT

EC
TU

R
E

D
IA

G
R

A
M

S

77

Initialization and automated update of the logical functions according to the
system functions

The transition tools create a first 1-1 traceability mapping between Logical
Architecture and System Analysis. Use dedicated traceability matrices to modify
the traceability relationships.

Enrich and details the functional breakdown with new logical functions.

Describe the data flows between logical functions and identify specific
functional chains.

The initialization and automated updated of the logical actors can be
performed according to system actors.

Use an architecture or breakdown diagram to describe the system internal
building blocks from a logical point of view.

Logical components are intended to interact with each other to achieve the
functional goals of the system.

LO
G

IC
A

L
A

R
C

H
IT

EC
TU

R
E

D
IA

G
R

A
M

S

78

The logical components are responsible for implementing the logical functions.
Manage these allocations using an architecture diagram and deduce component
exchanges implementing the functional exchanges.
Create dataflows scenarios to illustrate functional exchanges between the
components.

Use the automated synchronization tool to initialize the root logical system
according to the interfaces defined in System Analysis.

Delegate each system interface to one or more logical components. Create
internal interfaces between subcomponents.

Specify the dynamical behavior of the logical components by completing the
interaction sequences coming from the System Analysis. The enrichment of the
interaction sequences and the identification of the logical interfaces are two very
tight and iterative activities.

The scenario refinement process is iterative, each update on a source can be
automatically propagated to the target.

79

Final Considerations

SOME THOUGHTS

• Logical Architecture answers:

• “How the system will work to fulfill expectations”

• In the logical architecture we unfold the system in
functional logical aggregators = components

•We must decide how to arrange the functions and the
components and trade

•Maps the internal functions of the system.

81

• Fazer a etapa da formalização do modelo funcional
• Apresentar o modelo da arquitetura funcional:

• Características mínimas: desdobrar em 3 subcomponentes, das
funções de fronteira quebrar/juntar em no mínimo 10 subfunções,
mostrar análise de coesão-acoplamento dos subcomponentes,
fazer a máquina de estado de cada subcomponente (min 3), fazer
o diagrama de interfaces internas, escrever 10 requisitos (8
funcionais e 2 não funcionais) desdobrados dos requisitos da
intervenção sistêmica.

Atividades para a próxima aula

82

Conceptual Alternatives

Logical Architecture
Solution Neutral

Architecture

ROP

RTLI

Concept

Simulation
Ideation

SIL

PIL

[EXTRA] O PODER DO REUSO ☺

83

•Uma grande vantagem do “MB” é a capacidade de reuso
dos modelos.

• Se todo projeto tiver que construir todo o modelo todas
as vezes, não será diferente de fazer tudo baseado em
documento, na verdade será até mais demorado.
• Por isso temos que se beneficiar dos mecanismos de reuso das

ferramentas.

•No Capella temos “dois mecanismos”:
1. Coleções e Replicas
2. Bibliotecas

ACELERANDO AS COISAS

84

Coleção de Elementos Replicáveis
(REC) e Replicas (RPL)
Replicable Elements Collection (REC) e Replicas (RPL)
Escrito por Mateus S. Venturini

85

Definição

•Uma Coleção de Elementos
Replicáveis (REC) é um
conjunto de elementos de
modelo, identificados como
sendo um padrão (um
modelo no sentido comum
do termo) para a
construção de Réplicas
(RPLs) que mantêm
conformidade com ele.

86

REC

REC

RPL

RPL

• A REC can be viewed as a “contract” to which all its
RPLs must comply. REC can embed RPLs of other RECs.

• REC and RPL are located in Catalogs. Technically, REC
and RPL are technical objects pointing towards the list
of the elements they embed.

• Capella provides tooling to manage the creation of
REC and their instantiation, as well as update
mechanisms (from REC to RPL and from RPL to REC)
and validation rules.

• Different kinds of conformance are possible between
a RPL and its REC. Capella defines three default kinds
of conformance, but end-user can define their own
ones.
• Blackbox: No modification is allowed on the Replica.
• Constrained Reuse: Internal elements can be added

inside a RPL, but constraints and Interfaces (Function
and Component Ports for example) defined in REC
cannot be modified.

• Inheritance: Any element can be added in the RPL,
including new Interfaces.

87

Definição

REC

REC

RPL

RPL

cRIANDO UMA REC

88

2. From a diagram, select a consistent set of
elements (here, a Component and the Functions
it is performing).

1. From the contextual menu,
select “REC/RPL->Create REC-
>From selection...”

4. The REC creation dialog appears. A name shall be given to the REC. The Catalog field
allows to select in which catalog this REC should be created. When working with
Libraries, the Catalog is most likely located in a Library. In a library, an additional action
“With whole library content...” is shown in the REC creation menu. If that action is
chosen, the new REC will be initialized with the entire contents of the library.

3. The scope (content) of the REC is displayed. This dialog helps modifying this
scope (for example adding or removing elements). By default, the tool applies a
set of business rules to include elements (for example, allocations between
Component and Functions, children of an element, Etc.). Note here that despite
Functional Exchange “fe23” is carrying Exchange Items, these Exchange Items are
not included by default in the REC. In most of the cases, they shoud not be, as
references are kept.

6. It is possible at
this stage to define
which elements will
have to be renamed
when the REC will
be instantiated
(label [+SUFFIX]).

5. The compliancy field allows defining how REC
would be instantiated (is it possible to modify content
of the replica? add external interfaces? add ports?
add more functions?).

7. Notice the message at the bottom of the dialog, selected elements are linked to some elements which are not included in the REC
(many exchange items, visible by clicking on the browse button on the right). When the REC will be instanciated, elements of the newly
RPL will be linked to these exchange items too.

Criando...

89

1. Close the dialog and check the result.
In the Project Explorer, the newly created REC
appears. The Semantic Browser also show REC-
related information:

2. And from the Function
F2 included in the REC:

Usando uma rec EM UMA RPL

90

1. From anywhere in the model, use
the contextual command “REC/RPL-
>Instantiate a RPL from a REC”:

2. This dialog allows:
•The selection of the REC to instantiate (click on “Browse”)
•The definition of a target container (Catalog) for the RPL going to be created.
•The definition of a suffix for each element of the REC that was marked as having to be renamed.
•The compliancy field allows defining how RPL can be modified according to its REC (is it possible to modify
content of the replica? add external interfaces? add ports? add more functions?) See the RPL Validation part
for further description of any kind of compliancy (This feature is not fully available yet)
•To enable live compliancy validation for this RPL select “Enforce RPL Compliance on the fly”.
All RPL elements corresponding to a REC element with the suffix tag [+SUFFIX] will have the RPL suffix.
The parent locator options exist to specify where the RPL elements will be located:
•Use default locations: Elements will be located in standard containers in the model
•Create specific packages: For each element type, a RPL specific package will be created. Elements of the
corresponding type will be stored in that package. Some elements, e.g. Parts do not get a specific package and
are located just as if the default locations option would be selected.
•Locate parents manually: A location has to be found manually for the root elements of the RPL. The elements
for which a location still has to be found are marked in Orange. The definition of a new location is performed
using drag and drop between the two trees:

UPDATE REC from the RPL

91

1. Perform a change on
elements that are part of
the REC. Here, a Function
and two Functional
Exchanges are added.

2. Select at least one
original element of the REC
and from the contextual
menu, choose ‘Update REC
from selection”

3. The REC definition dialog
appears, including the new
elements

4. Click on OK. This will open the DiffMerge view. Press 'Apply' to update the rec to include
all additional changes to the REC (additional information about this dialog is available in the
Model DiffMerge section) .

Update RPL from the REC

92

Bibliotecas

93

• Biblioteca é um modelo Capella
destinado a ser compartilhado
entre vários projetos.

• Um projeto pode fazer referência
a uma biblioteca com READ ou
READ/WRITE. Neste último caso,
isso significa que o conteúdo da
Biblioteca pode ser modificado a
partir do próprio Projeto, sem ter
que abrir especificamente a
Biblioteca.

• Uma biblioteca pode ter
referências a outras bibliotecas,
mas uma biblioteca não pode ter
uma referência a um projeto.

94

definição

• Permitir a reutilização de elementos de modelo em modelos
diferentes (por exemplo, vários projetos em um domínio
geralmente precisam compartilhar o mesmo modelo de
dados).
•Melhorar a organização (evitar duplicação e referências entre

modelos)
• Catálogos de elementos replicáveis
• As bibliotecas se beneficiam das mesmas ferramentas que os

modelos.
• Edição do conteúdo da biblioteca através de diagramas e editores
• Navegador semântico
• Regras de validação e correções rápidas

95

A que se destinam as Bibliotecas?

•As bibliotecas são
criadas da mesma forma
que os projetos Capella
padrão.

•Do Project Explorer, criar
uma nova biblioteca
usando o menu
contextual

96

Criação de bibliotecas

Referenciando uma biblioteca

97

1. Select the “Libraries | Manage References”
item in the contextual menu on the “aird” file of
a standard Project Model.

2. The first tab of this dialog displays all the
accessible Libraries in the current workspace (A
Library in a closed Eclipse Project will not be
proposed).

3. The second tab of the dialog displays which Library is currently active.
When a Library is not active, queries in Editors for example will not display
the content located in the Library.

4. The third tab allows specifying
whether the content of a referenced
Library can be directly modified from
the Project itself. The default is “Read
only”.

5. Once the Project Model is opened, the
referenced Library can be seen directly from
the Project itself.

Usando: allocation of Exchange Items to a
Functional Exchange

98

1. Example with the allocation of Exchange
Items to a Functional Exchange

2. The transfer dialog display both
elements coming from the current
Project and elements from the Library.

3. Once the allocation is performed, the result can
be seen in the Semantic Browser.

Usando: Components and Interfaces

99

1. From an interface diagram, use the
Insertion tool to select and display an
Interface located in the Library.

2. The selection wizard proposes the
Interface located in the Library.

3. The Interface appears on the
diagram.

4. The Component in the Project Model
can now “provide” the Interface located
in the Library.

USANDO COM RPL/REC

100

1. Create a
library

2. In the Logical Architecture, create
some elements and create a REC from
them.

3. The dialog
displays the
content of the
REC.

4. Notice the message at the end of
the dialog : Functional Exchange is
associated to some Exchange Items
defined in the library:

5. After creation, the REC is available In
the library.

Ensure your library is saved.

ADICIONANDO A RPL DA LIB NO PROJETO

101

1. In a Logical
Architecture Blank
diagram, instantiate a
new RPL

3. In the dialog, select
the REC located in the
referenced library:

2. Display all elements of
the RPL in the diagram

REFERÊNCIAS sobre REC->RPL / libs

• [HOW TO] Replicate model elements in Capella (4’25’’)
• https://www.youtube.com/watch?v=h-ax61eVlxM

• Webinar - Strategies and tools for model reuse with
Capella (58’23’’)

• https://www.youtube.com/watch?v=I28EhAXe-i8

• In-Flight Entertainment System (IFE) – Example
• https://download.eclipse.org/capella/samples/1.3.1/InFlightEn

tertainmentSystem.zip

• Capella Help – Replicable Elements102

	Default Section
	Slide 1: Concepts
	Slide 2
	Slide 3
	Slide 4: MMMF

	Untitled Section
	Slide 5: IDEATION USING OPM
	Slide 6: Context
	Slide 7: OPM Function
	Slide 8: OPM Funcion + Form (instrument)
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Solution-Neutral (Solution)
	Slide 15: Solution-neutral questions
	Slide 16: EX.: Concept of remove a cork from a wine flask.
	Slide 17: Solution Neutral reasoninng
	Slide 18: Solution-Neutral
	Slide 19: Examples
	Slide 20: Removing a Wine Bottle Cork
	Slide 21: Selectable Options
	Slide 22: Example of options
	Slide 23
	Slide 24
	Slide 25

	Untitled Section
	Slide 26: Solution domain
	Slide 27: T2 – Consider the whole problem, the whole solution and the full lifecycle
	Slide 28: PROBLEM SPACE
	Slide 29: Solution space
	Slide 30: Essa fase é feita por estruturadores de arquitetura... Exemplo é o left field do jpl
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: DECISION MATRIX – PUGH’S METHOD

	Untitled Section
	Slide 36
	Slide 37: INTENTION EXPLORATION
	Slide 38: trading
	Slide 39
	Slide 40
	Slide 41

	Untitled Section
	Slide 42: LOGICAL ARCHITECTURE
	Slide 43
	Slide 44: WHAT IS IN THE LOGICAL ARCHITECTURE (LA)?
	Slide 45: Logical Architecture
	Slide 46
	Slide 47
	Slide 48: The main activities for the definition of the logical principle architecture are as follows:
	Slide 49: Definition of the factors impacting the architecture and analysis viewpoints
	Slide 50
	Slide 51
	Slide 52: Definition of the behavior principles of the system
	Slide 53
	Slide 54: Construction of component-based system structuring alternatives
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Selection of the architecture alternative offering the best trade-off
	Slide 59: Arcadia method – LOGICAL ARCHITECTURE analysis summary
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: LOGICAL ARCHITECTURE CONCEPTS
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: LOGICAL ARCHITECTURE DIAGRAMS
	Slide 77
	Slide 78
	Slide 79

	Untitled Section
	Slide 80: Final Considerations
	Slide 81: SOME THOUGHTS
	Slide 82: Atividades para a próxima aula

	REC-RPL
	Slide 83: [EXTRA] O PODER DO REUSO 
	Slide 84: ACELERANDO AS COISAS
	Slide 85: Coleção de Elementos Replicáveis (REC) e Replicas (RPL)
Replicable Elements Collection (REC) e Replicas (RPL)
	Slide 86: Definição
	Slide 87: Definição
	Slide 88: cRIANDO UMA REC
	Slide 89: Criando...
	Slide 90: Usando uma rec EM UMA RPL
	Slide 91: UPDATE REC from the RPL
	Slide 92: Update RPL from the REC
	Slide 93: Bibliotecas
	Slide 94: definição
	Slide 95: A que se destinam as Bibliotecas?
	Slide 96: Criação de bibliotecas
	Slide 97: Referenciando uma biblioteca
	Slide 98: Usando: allocation of Exchange Items to a Functional Exchange
	Slide 99: Usando: Components and Interfaces
	Slide 100: USANDO COM RPL/REC
	Slide 101: ADICIONANDO A RPL DA LIB NO PROJETO
	Slide 102: REFERÊNCIAS sobre REC->RPL / libs

