A -
===
o

|IEA-P — DEPARTAMENTO DE PROJETOS

(PROJECT DEPARTMENT)

1

-t“_g—..'-'

R

i

=

ARCML BEHAVIORS

Session 07

Prepared by Prof. Dr. Christopher Shneider Cerqueira

) =
= =
s R

Review

1. Systems Engineering Basics ° ARCM L D|agra m

Stk — Lifecycle — CONOPs —
Functions — Architecture — V&V

* Classical Representations ¢ BlOCk Diagra m
2. Path to SE Digitalization ° ClaSS Diagra m

* Meta(meta)models
* Language
* Methodologies

* OPM

-+ Motivation

* ARCML defines the use of two “diagram styles” to create
functional/component architectures
* Trees/layers

 Differently from OPM, even though functions are
somehow behaviors. The diagramas do not show the
component behavior over time. It is implemented three
ways:
 Reactive Behavior (Statemachines) descriptions
e Use case (Capabilities) descriptions
* Sequence (Scenarios) descriptions

SEMANA TEORIA INDIVIDUAL PESO GRUPO PESO

1| 7 |Estrutura e Filosofia do Curso
o5-Aug| 1 |O que é Engenharia de Sistemas? INCOSE Al-01 - Resumo Cap 1 - 10%
" ‘o
1 |Elementos da Eng Sis. HB INCOSE
1 |Introducgdo aos diagrams classicos.
2 * (Viagem ao EUA)
o Al-02 - Leitura/Resumo
J paper sobre 10%
representacdes classicas.
3 * (Viagem ao EUA)
o Al-03 - Exercicio sobre
J arquitetura e escrita de 10%
requisitos.
4| 1 |Metodologias de MBSE e uso de modelos.
26-Aw| 1 |Reviséo de UML-SysML. Al-04 - Resumo Artigo de 10%
1 |OPM Metodologias
1 |Arcadia
5| 1 [OPM
o b Al-05 - Lista de exercicios 10%
1
1
6| 7 |Blocos e Classes
] W N— Al-06 - Lista de Exercicios | 20%
1 |Méaquina de Estados
1
7| 7 |Casos de Uso
e o — Al-07 - Lista de Exercicios 20%
1 |Sequéncia
1
8| 7 |Integragéo dos pontos de vistas em um
23-sep| 1 [Associagdo dos artefatos de SE com modelos Al-08 - Resumo sobre Al-08 - Descrigéo e
. . 10% 100%
1 |Analise Operacional Ciclo de Vida de Modelos Contorno do Problema.
1
100% 100%
SEM
30-Sep
5

Summary

Reactive Behavior
(Statemachines)

S | 2

-+ Reactive system definition

* A reactive system is a system that, when switched on, is

able to create desired effects in its environment by
enabling, enforcing, or preventing events in the
environment.

* Properties:
e Continuous interaction (nonterminating)
 System will respond to external stimuli, and
* the response depends of its current state

-~ REACTIVE SYSTEMS EXAMPLES

* REAL TIME SYSTEMS — the answer depends on the time.
Ex.: control software, elevator control, ATMs

* SAFETY-CRITICAL SYSTEMS — malfunctional behaviors can
lead to lost of lives. Ex.: bio-physical systems, onboard
computers (car/aircraft/spacecraft/ship)

* EMBEDDED SYSTEMS — implementation restrictions. Ex.:
mobile, onboard software-firmware, 10T.

*Systems that manage critical infrastructures: air
management, train, nuclear reactors, so on.

Cause and effect chains

* The function of a
reactive system is to

respond to the Event or condition == === == === === Acti
occurrence of Effect 3 %‘ o
events or

conditions in the Connection domain
environment by

causing desirable e -
changes in the Reactive system

environment.

“# Events, conditions and actions

* EVENT — something that happens in the world.

e EXTERNAL EVENTS: discrete change in the condition of the
environment

* TEMPORAL EVENTS: passage of a significant time to which the
system is expected to respond

* CONDITION — state of the world that persists for some
nonzero period of time.

* ACTIONS — events from the point of view of the initiator

* The stimulus of a system is an event at the interface of
the system caused by the environment.

e External events occur somewhere in the environment;
stimuli occur at the interface of the system

* The reactive system responds to an external or temporal
event by updating its state or producing an output.

* An output reponse of a system is an event at the
interface of the system, caused by the system.

* The desired effect of the stimulus may consist of one or
more desired actions, to be caused by several responses.

yF

e Summary

Event Action Time to perform action === === == ===~ » Action
| | *

Observer Connection domain Actor Timer Connection domain Actor
YStimulus Respons;T YStimulus ResponseT

Reactive system | Reactive system

Events-Stimuli Temporal Events

=&~ State Machines

* A finite-state machine (FSM) or finite-state automaton (FSA,
plural: automata), finite automaton, or simply a state machine,
is @ mathematical model of computation.

* It is an abstract machine that can be in exactly one of a
finite number of states at any given time.

* The FSM can change from one state to another in response to
some external inputs; the change from one state to another is
called a transition.

* An FSM is defined by a list of its states, its initial state, and the
conditions for each transition.

https://en.wikipedia.org/wiki/Finite-state_machine

——

Example

Current
State Input Next State Output
Unlocks the turnstile so
coin Unlocked that the customer can push
Locked through.
push | Locked None
coin Unlocked None
Unlocked When the customer has
push | Locked pushed through, locks the
turnstile.

FSM representing the brain of

= Agame example e

healthpoints
are low

S

I e

found player is
aid idle
player is
near

player is
attacking back

fpﬁ attack
'

player is out
of sight

https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--
gamedev-11867

* State machines are typically used to describe the state-
dependent behavior of a block throughout its lifecycle,
which is defined in terms of its states and the transitions
between them.

*The state machine defines how the block’s behavior
changes as it transitions between different states and
while the block is in different states.

* State machines can be used to describe a wide range of
state-related behavior, from the behavior of a simple
lamp switch to the complex modes of an advanced

aircraft

= = Entry Activity
Action performed o

State Name — — —(E=FIAWok N | on ey o slale
lame of state entry / unlock door < = l
do / prepare materals — = Do ﬁﬂfl"v"lh’
= == == ==)| t@l@phone rings /defer Action performed while in state
| exit / lock door «f == = |
Acive ' L — Exit Activity
Deferrable Trigger Action performed on leaving stafe
I Fvent 'I*-:_’r does nof tngger any state transitic n,
but remain in the event pocl ready for processing
Transition

the obiect trans -I-Ia-;--\. to an -\.-I-;-;r-.--.-\.-l-;
||'__--_'-_-_--_- LT THE T B LT e RN L W |

* A state is a constraint or a situation in the life cycle of an object, in

which a constraint holds, the object executes an activity or waits
for an event.

* There are several characteristics of states in general, regardless of
their types:

* State represent the conditions of objects at certain points in time.

* A state is often associated with an abstraction of attribute values of an
entity satisfying some condition(s).

* An entity changes its state not only as a direct consequence of the current
input, but it is also dependent on some past history of its inputs.

-+ Specifying states

* REGION: describe the state-related
behavior of the state machine.

* STATE: represents some significant
condition in the life of a block, typically
pecause it represents some change in how

the block responds to events and what

oehaviors it performs.

e Each state may contain entrx and exit
e

behaviors that are performed whenever the
state is entered or exited, respectively. In
addition, the state may contain a do
behavior that executes once the entry
behavior has completed

stm Surveillance System)

®
Turn Off

operating

entry/Display "Operating" Status
do/Monitor Site
exit/Display "Shutdown" Status

* Transition lines depict the movement from one state to
another. Each transition line is labeled with the event that
causes the transition.

* Understanding state transitions is part of system analysis
and design

* Multiple transitions occur either when different events
result in a state terminating or when there are guard
conditions on the transitions

e A transition without an event and action is known as
automatic transitions

» Trigger

* A trigger identifies the possible stimuli that cause a transition
to occur. SysML has four main kinds of triggering events.

* A signal event indicates that a new asynchronous message
corresponding to a signal has arrived.

* A signal event may be accompanied by several arguments that can
be used in the transition effect.

* A time event indicates either that a given time interval has passed
since the current state was entered (relative) or that a given
instant in time has been reached (absolute).

e A chan%e event indicates that some condition has been satisfied
(normally that some specific set of attribute values hold).

* A call event indicates that an operation on the state machine’s
owning block has been requested. A call event may also be
accompanied by several arguments

* Guard

* The transition guard contains an expression that must
evaluate to true for the transition to occur. The guard is
specified using a constraint, which includes a textual
expression to represent the guard condition.

* When an event satisfies a trigger, the guard on the transition is
evaluated.
* |f the guard evaluates to true, the transition is triggered;

* if the guard evaluates to false, then the event is consumed with no
effect.

* Guards can test the state of the state machine using the
operators in (state x) and not in (state x).

*The effect is a behavior executed during the transition
from one state to another.

*The transition effect can be an arbitrarily complex
behavior that may include send signhal actions or
operation calls used to interact with other blocks.

 If the transition is triggered, first the exit behavior of the

current (source) state is executed, then the transition effect
is executed, and finally the

< |nitialization and completion

* The initialization and completion of a region are described
using an initial pseudostate and final state, respectively.

* An initial pseudostate is used to determine the initial state of a
region.

* When the active state of a region is the final state, the region
has completed, and no more transitions take place within it.
Hence, a final state can have no outgoing transitions.

* The terminate pseudostate is always associated with the state
of an entire state machine. If a terminate pseudostate is
reached, then the behavior of the state machine terminates. A
terminate pseudostate has the same effect as reaching the
final states of all the state machine’s regions.

> Routing transitions using pseudo states

* There are a variety of situations when a simple transition
directly between two states is not sufficient to express the
required semantics.

* A junction pseudostate is used to construct a compound transition
path between states. The compound transition allows more than
one alternative transition path between states to be specified,

although only one path can be taken in response to any single
event.

* The choice pseudostate also has multiple incoming transitions and
outgoing transitions and, like the junction pseudostate, is part of a
compound transition between states. The behavior of the choice
pseudostate is distinct from that of a junction pseudostate in that
the guards on its outgoing transitions are not evaluated until the
choice pseudostate has been reached.

Routings

stm Survelllance Sysl.am)

Tum Off
[r == "Yes")/ Confirmation
Shut Down Cameras Response (r) e
idle e [shutting down | I =~ *Yee')Stur
n Cameras e
idle = Shutdown [in (logged on)})/
Startup after (60 s R Shiutdown r = Confirm Shutdown
Display *Timed Out* Status [r 1 (in (logged on))/
Confirm
Shiutdawn fee)
initializing [init OK] Request
System operating § operating
KO ; . ;
- entnr.fr_‘lmplal_.-. Operating” Stalus entry/Display "Operating” Status
_ dn:l’hhnlbnr Site do/Monitor Site
[t init OK] . axit/Display “Shutdown® Status exit/Display *Shutdown® Status

System OK
diagnosing i

+ Composite states — single region

* A region typically will contain an initial pseudostate and a
final state, a set of pseudostates, and set of substates, which
may themselves be composite states.

 If the region has a final state, then a completion event is
generated when that state is reached.

* A composite state may have many regions, which may
each contain substates.

yF

= Composite states — single region (two substates)

operating

entry/Display "Operating” Status; logged in = 0
do/Monitor Site
exit/Display "Shutdown" Status

Loginflogged in =
logged in + 1
[logged off 1' f logged on

Entcg,r.l'[:llsplay ‘Logged g entry/Display "Logged On®; time on = now
Off exit/Display "Session Length:", now — time on
"It Logout [logged in =1)logged in = logged in — 1
Loginflogged in = logged in + 1

Logout [logged in == 1]/
logged in = logged in — 1

~* Composite states — concurrence

* When an orthogonal composite state is active, each

region has its own active state that is of the
others, and any incoming event is independently analyzed

within each region.
* A transition that ends on the composite state will trigger
transitions from the initial pseudostate of each region, so
there must be an initial pseudostate in each region for such a

transition to be valid.
e Similarly, a completion event for the composite state will
occur when all the regions are in their final state.

operating

antry/Display "Operating” Status; logged in = 0
do/Monitor Site
axit/Display "Shutdown” Status

[

logged on

entry/Display "Logged On®; time on = now
exit/Display *Session Length:®, now — time on

logged off Loginflogged in =| | oot Tlogged in —1)loaged in = logged in — 1

logged in + 1

Em-

entry/Display "Logged

o Loginfogged in = lagged in + 1

A

Logout [leaged in == 1]Aagged
in = logged in — 1

route maintenance

? Edit Routes
[

1

L

idla maintaining
Stora Roules]

Alartfalert count = alert count + 1
f':'la-rtmmt=0‘ p -l “

/Display "Alarts: *, alert count

l normal | alerted |
Stand Down™]

- Firing order

* |t is possible that the same event may trigger transitions

at several levels in a state hierarchy, and with the
exception of concurrent regions, only one of the
transitions can be taken at a time.

stm Machine 1)

| state 1
i
sigl [x == 0]
state 1.1.1 - }|J state 1.1.2 |
sigl [x <= 0]
o —
i1

sigl [x == 1]
.I state 1.2.1 3 state 1.2.2
L. "

Histo ry pseu dostate

*In some desigh scenarios, it is desirable to handle an
exception event by interrupting the behavior of the
current region, responding to the event, and then
returning back to the state that the region was in at the
time of the interruption.

* A deep history pseudostate records the states of all regions in

the state hierarchy below and including the region that owns
the deep history pseudostate.

* A shallow history pseudostate only records the top-level state
of the region that owns it.

34

MODES AND STATES

Modeling system modes, states, configurations with Arcadia and Capella: method
and tool perspectives - 27th Annual INCOSE International Symposium (IS 2017)

* The definition of the system’s expected behavior (or therefore,
of one of the elements mentioned earlier) in situations
decided from the design is captured in the form of system
modes; each mode is characterized principally by the
functional content expected of the system in this mode (as a
mnemonic, we talk of a “mode of life” to express the different
expectations, priorities and activities in a life, and a “mode of
transport” to indicate the means of travel).

* A mode can convey various concepts, such as a mission or
process stage, a particular behavior required of the system,
conditions of use such as a test or maintenance mode, a
training mode, etc.

*As its principal modes, | indeparture | ronaornomater | Train arival_|
the traffic control system

will naturally have the | |
modes characterizing
the principal situations it
should manage: train ———
departure, train arrival ewsteniemson
and road traffic. i

Departgd train information Arrived train inflormation

MODES AND STATES

36

*In the course of its life and use, the system also passes
through some states it undergoes (we say, “What a state you
are in!” and we speak of a “state of alert or of emergency” to
indicate an unexpected situation).

* Most often, a state characterizes mostly structural elements
(presence or absence of a component, availability or
breakdown, integrity or lack of it, availability of an external
actor or loss of connection with it, etc.).

* Transition from one state to another is often involuntary, and
will therefore result, for example, in a change in property for
one or more elements in the system (availability/unavailability

for example).

* The level crossing can be found in a

This
situation is of course foreseen, but not on the initiative of
the system, so it is undergone by the system, which must
consequently react.

= Configuration

* To characterize the system when it is in a given mode or
state, we will define the notion of configuration: a
configuration identifies a set of model elements, of all
types (for example functions, components, exchanges,
etc.), globally involved in use of the configuration, at a

given instant.

¥« A configuration intended to describe the expectation of a
 mode will tend to be (though not exclusively) function
dominant (capabilities, functions, exchanges, functional
chains and scenarios, etc.) to express the expected
functional content — or if it is easier to express, the
functional content not present in this mode.

* A configuration intended to describe a state may be
structural dominant (hosting physical components,
physical links, indeed behavioral components hosted on
the former, etc.), but could also include functional
aspects, depending on the nature of the states
considered (for example attack or failure scenarios, from a
security viewpoint).

~# Scenario

* |t is therefore necessary to define the combination of these
states and modes to be able to study their consequences. For
this, we will use the notion of a situation of superposition. A
situation is defined as a logical combination of modes and
states (for example (model AND statel) OR (mode2 AND
(state2 OR state3)), which would express the superposition of
modes and states likely to occur at a given instant.

* A scenario can mention the transition from one situation of
superposition to another, in the same way as it will mention
changes of states and modes in the course of time.

|

MODES AND STATES

42

» Example of situations

Mission Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6
System Mode 1| Mode 2 Mode 3 Mode 4 Mode 2 Mode 3

Mode A Mode B Mode C | Mode A Mode C Mode A
Subsystems Mode X Mode Y Mode Z ModeX Mode Y

Mode | Mode J Mode | Mode J Mode | Mode J

A
_-—____..‘l"--\.
Comms

| MEANING OF STATES AND MODES

OA describe either general situations that the organization considered confronts (usually
rather states such as routine conditions, states of crisis, a situation where there is a lack of
resources, for example), or the stages of a mission, or of the organization’s normal functioning
(usually rather modes, such as an airplane’s or space launcher’s stages of flight).

SA describing the expectation on the system, as desired by the customer; they are most often
perceived and employed by the final users. In particular, they capture the different modes and
conditions of use required of the system in different situations, and feared situations, with the
minimal behavior required when facing these situations

LA the system states and modes respond this time to design choices or constraints. New modes
and states reflecting the choices of solutions can appear, which cannot be linked to those of
need analysis.

PA applied to the system, but also to each logical architecture component and to the physical
architecture components linked to it: modes and states, as well as the content of their associated
configurations, should be coherent with traceability links (between functions, between
components, between exchanges triggering transitions, etc.) between both architecture
perspectives.

43

Use Cases (Capabilities)

=t

45

Use case introduction

* Use cases describe the functionality of a system in terms of
how it is used to achieve the goals of its various users.

e Use cases can also be classified using generalization, but in
addition, one use case may include or extend other use cases.

* The users of a system are described by actors, which may
represent external systems or humans who interact with the
system. Actors are related to the use cases in which they
participate.

* Use cases have been viewed as a mechanism to capture
system requirements in terms of the uses of the system.

& Example use case diagram

Operator Operator

Remote Control Terminal

Autonomous Control Manual Control Continuous Data Transmission
Onboard 3)

Computer
Subsystem c r Gosaisissssisuinmosssdsiai

Sai»

Process Posi 'rt;ning data

46

* An actor is used to represent the
that participates in
the use of some system.

* Actors may interact directly with the system or indirectly
through other actors.

* Actors can be classified using the standard generalization
relationship.

has a similar meaning to the
classification of other classifiable model elements.

* For example, a specialized actor participates in all the use
cases that the more general actor participates in.

48

<+ |Jse cases

* A use case from the
perspective of the users of the system.

* The goals are described in terms of functionality that the
system must support. Typically, the use case description
identifies the goal(s) of the use case, a main pattern of use,
and a number of variant uses.

* A use case may cover one or more scenarios that correspond
to how the system interacts with its actors under different
circumstances.

* Actors are related to use cases by communication paths, which
are represented as associations, with some restrictions.

* The ! relationship allows one use case, referred to as the base use
case, to include the functionality of another use case, called the included
use case.

* A use case can also extend a base use case using the extension
relationship. The extending use case is a fragment of functionality that is
not considered part of the base use case functionality. It often describes
some exceptional behavior in the interaction, such as error handling

between subject and actors that does not contribute directly to the goal of
the base use case

* The meaning of « : is similar to that for other classifiable model
elements. One implication, for example, is that the |
. It also
means that the actors associated with a specialized use case can also
participate in scenarios described by a general use case.

- A set of use cases for the Surveillance System

- Operator Operator
Remote Control Teprminal
Autonomous’:ControI Ma‘nual Control Continuous Data Transmission
Onboard : p
Computer
Subsystem [« Cr SR
«e»

Si»

Process Posi &6ning data

50

» Use case description

* A text-based use case description can be used to provide
additional information to support the use case definition. This
description can contribute significantly to the use case’s value.

* A typical use case description may include the following:

. Igre-_conditions—the conditions that must hold for the use case to
egin.

e Post-conditions—the conditions that must hold once the use case
has completed.

Sequence (Scenarios)

- SEQUENCE INTRODUCTION

* Represent the in a
model as a sequence of message exchanges.

* A message can represent the

* The structural elements of a block are represented by lifelines
on a sequence diagram.

* The sec1uence dlagram describes the interaction between
these lifelines an ordered series of occurrence
specifications that descrlbe different kinds of occurrences, such
as the sending and receiving of messages, the creation and
destruction of objects, or the start and end of behavior
executions.

53

54

sd subm iT._EDfTII'I‘IEﬁtS)

lifeline wservliets

DWRServlet
window ajavascripts
:Comments
gate
: | | object creation
validate() > | | e
synchronous / validate()
message - — - . o
execution > S | = Proxy
speciication specification «ajaxn |
N
return wajaxm
<----- - /1 |
messade
’ —B_ _ | asynchronous
f,f'”"ﬁ*:: | message
gate {10..200ms) | e
| «callback»
duration ____ — =

constraint

—

interaction use

Handle Errors

destruction
oCccurrence
specification

umnl-diagrams.org

- Sequence diagram =2 Scenarios

System Analysis Logical
Farmalire Sysia E:

* A Scenario describes the

» Transition From Operational Activities

behavior of the System in > ermsomcnse

= . .
= Refine System Functions, describe Functional Y * = 2 character, ™ = any sbring

the context of a particular .- 175
Ca p a bl I Ity [] (?g [SDFB1 Create a new Functional Dataflow ’ 4 @B mad“ ;ﬂ ::th!r _—
* Functional Scenario [st

P EXCh an ge Scenario » Alocate System Functions to System and Actd

 Even if we do not wish to use this concept, Capella automatically creates
a Capability the first time a Scenario is created, unless of course
Capabilities already exist. In this case, Capella asks to choose one

- Capability to attach the new Scenario.

* Messages

A sender of an
asynchronous message

continues to execute after

sending the message,
whereas a sender of a

synchronous message waits
until it receives a reply from

the receiver that it has

completed its processing of

the message before
continuing execution.

* An open arrowhead means
an asynchronous message.

A closed arrowhead means
a synchronous message.

 An arrowhead on a dashed
line shows a reply message.

sd Camera Control [Simple Sequence])

security guard [Elvis] : Advanced Operator %

company security system : Surveillance System

select camera(camera id = "CCC1")

get current status()

]
|
|
|
|
|

get current status():"OK"
fem e i

pan camera(strength = 2}

|JF_ —

get current status()

get current status():"Moving"

b T e T

get status
(camera id = "CCC1")

i get status():"OK"

get status
(camera id = "CCC1")

FIGURE 10.5

Synchronous and asynchronous messages exchanged between lifelines.

%ﬁ Message
W

Create message

Destroy message

Synchronous call
message

Asynchronous call
message

Asynchronous
signal message

Description

A create message represents the creation of an instance in an
interaction. The create message is represented by the keyword
«create». The target lifeline begins at the point of the create
message.

A destroy message represents the destruction of an instance in an
interaction. The destroy message is represented by the keyword
«destroy». The target lifeline ends at the point of the destroy
message, and is denoted by an X.

Synchronous calls, which are associated with an operation, have a
send and receive message. A message is sent from the source lifeline
to the target lifeline. The source lifeline is blocked from other
operations until it receives a response from the target lifeline.
Asynchronous calls, which are associated with an operation, typically
have only a send message, but can also have a reply message. In
contrast to a synchronous message, the source lifeline is not blocked
from receiving or sending other messages. You can also move the
send and receive points individually to delay the time between the
send and receive events. You might choose to do this if a response is
not time-sensitive or order- sensitive.

Asynchronous signal messages, are associated with a signal. A signal
differs from a message in that there is no operation associated with
the signal. A signal can represent an interrupt or error condition. To

Example

In a banking scenario, a bank manager might
start a credit check on a client by sending a
create message to the server.

A bank manager, after starting a credit
check, might close or destroy the credit
program application for a customer.

A bank teller might send a credit request to
the bank manager for approval and must
wait for a response before further serving
the customer.

A bank customer could apply for credit but
can receive banking information over the
phone or request money from an ATM,
while waiting to hear about the credit
application.

A credit agency could send an error signal
message to the bank manager that states a

specify a signal, you create an asynchronous call message and change failure to connect to the credit bureau.

the type in the message properties view.

Messages in UML diagrams - IBM Documentation

https://www.ibm.com/docs/en/rsm/7.5.0?topic=diagrams-messages-in-uml

A customer gives the application for
the loan to the bank teller.

The bank teller sends the aEpIication
to be processed by the bank manager
and waits for the manager to finish.

The bank manager starts the credit
check program, enters the data, and
waits for the credit agency to send
the results.

The bank manager receives a
response and sends a message to the
bank teller that states the decision.

The bank teller sends a message to
the customer about whether the loan
was approved.

The bank manager closes the credit
agency program and the customer
completes the transaction.

Interactionl

% customer:Customer | bank:Bank Teller | bank Mgr:Bank Mgr

1: apply for loan

2 calMgr
“Creates
2.1 | creditagency

2.2 EnterData

2.3 EnterData
3 calMgr

4\ Approve), wdlestroys
4,.7:

Messages in UML diagrams - IBM Documentation

https://www.ibm.com/docs/en/rsm/7.5.0?topic=diagrams-messages-in-uml

Executions

* The receipt of a

message by a lifeline

may trigger the
execution of a
behavior in the
receiver.

e Activations are

rectangular symbols
overlaid vertically

on lifelines.

59

sd Camera Control [Simple Sequence with ﬁnc‘rivatiﬂnsu

security guard [Elvis] : Advanced Operator -

company security system : Surveillance System

select camera(camera id ="CCC1")

| current camera = camera id

get current status()

get current status():"OK"

{ __

pan camera(strength ="2")

get status
(current camera)

[

get current status()

get current status():"Moving”

{ __

get status():"OK"

get status
{current camera)

E get status():"Moving"

.::‘_'. _____

FIGURE 10.7

Lifelines with activations.

“+ Representing time

* A time observation refers to | sdsucesticameratest

a n i nSta nt in ti m e user interface : Ul : Monitoring Station [c1] : Camera [c2] : Camera
corresponding to the escamems) | o | '

observation refers to the
time taken between two
instants during the
execution of the interaction.

* A time constraint and a
duration constraint can use
observations to express ;
constraints involving the
values of those

Test Complete(1, true) d = duration

Test in Progress(2)

I |
occurrence of some event R | perform selftest() |
during the execution of the |y |
interaction, and a duration Ok ey e |

|
|
I
|
|

{5..10}

—
perform self test()

[
camera test complete ! \/E]
(OK = true) ! —
T

e

Test Complete(2, true) {d..d"1.5}

System OK

N N S O

observations.

FIGURE 10.10

Representing time on a sequence diagram.

60

<o~ FRAGMENTS

* More complex patterns of interaction can be modeled using constructs

called combined fragments.

* Par- an operator in which operands can occur in parallel, each following weak
sequencing rules. There is no implied order between occurrences in different
operands.

 Alt/else—an operator in which exactly one of its operands will be selected based
on the value of its guard. The guard on each operand is evaluated before selection,
and if the guard on one of the operands is valid, then that one is selected. If more
than one operand has a valid guard then the selection is nondeterministic. An
optional else fragment is valid only if none of the guards on the other operands are

valid.

* Loop—an operator in which the trace represented by its operand repeats until its
termination constraint is met. A loop may define lower and upper bounds on the
number of iterations as well as the guard expression.

~.4

- PARALLEL

* Each parallel path
appears in a separate
compartment within the
combined fragment
frame. The parallel
compartments are
divided by a dashed
line, and the combined
fragment uses the
keyword par.

sd [Package] Scenarios [Successful Stunt — Escapologist View]

J

«block» «block» «block» «block»
:Set up :Start :Escape :Monitor
par | l l :
i Begin stunt . i E
Begin stunt |
| par | |
i ' Start escape /|—|
I I . Start escape

ALTERNATIVES

* Sometimes two or more Scenarios
are so similar that showing
alternative paths on a single diagram
rather than one per diagram is
desirable. SysML allows Scenarios to
be modelled in this way using
alternative combined fragments.

sd [Package] Scenarios [Computer Control of Pump — Use of Alt]

X

Assistant

start

«block»

:Pump Controller

«bloc

:Pump

kn

M [Emergency = FALSE]

stop

[Emergency = TRUE]

reverse

stop I
[‘_Iﬂush
stopPump

r==============" B I

reverse
stopPump
pumpReverse

¢ Th e keyWO rd may b e accom pa n|ed by sd [Package] Scenarios [Successful Stunt — Audience View — Assistant/Audience Interaction] ‘

a repetition count specifying a
minimum and maximum count as well % 7% 7%

L. . Safety Officer Assistant Audience
as a guard condition. The loop is : ; ;

. ca: . | begin g '
executed while the gugrc;l condition is ? " [oon] e mep—
true but at least the minimum count, . ; ;
irrespective of the guard condition g g whip-up audience ’U
and never more than the maximum f § §
cou nt. : : encourage applause /U

* The syntax for loop counts is

* loop minimum =0, unlimited maximum
* loop(repeat) minimum = maximum =
repeat

* loop(min, max) minimum & maximum
specified, min <= max

2{; Complex interactions described using interaction
operators [ueme

Isecurity guard [Elvis] : Advanced Operator ,—5’:‘ ‘ company security system : Surveillance System
! lllegal Entry Detected (id=sensor id) I

Intruder Alert (sensor id)

T

|

|

|
u Raise Alarm()

a_ItJ {automatic mode

|
I
. I
required} Auto Track() I

7
opt J {lost contact}
Lost Track |

_____________________________________ 1---

{manual mode |

required} I

I |

loop par J Pan Camera(strength) I

=1

I

il el L L L T |— —

Tilt Camera(strength) |

>

I

I

Cancel Alert() I

65

Cancel Alarm() -
T | "

FIGURE 10.12
Complex interactions described using interaction operators.

X

e Reusing of fragments

sd [Package] Scenarios [Preparation]

«block» «block» «block»
:Set up :Start Escape
|par | l)

E Begin stunt |,J i

Begin stunt /L.l

sd [Package] Scenarios [Successful Stunt — Escapologist View — Using Preparation Scenario]

«block»| |«blocks» «block» «block»
:Set up :Start :Escape :Monitor

Ny — ' '
ref J [Package] Scenarios [Preparation]

= s
E Start escape /Ll

| hecccscsccccsncaeee= leccrscccc s r e s e e e e e e e ===
]

Start escape ’U

yF

& Using references

67

sd End-to-End SL‘.E‘I'IE.I'iI:lJ

: Alarm Systam
ref During Alerd

Raise Alarmi)

sacurity guard[Elvis] % company sacurity systam
[gatel] : Pernmeter Sansor : Advanced Operator : Survaillanca Systam

I | |
I I I
I I I
| ref
| Salup System
I
I I I

I T
: nop ak : {mormal status}

|
| | ref)
| Route Maintenance
| (A I _______—__—_—_—_—_—_—__—__—__—_———C r———____
| | {alart stabus}
llagal Entry
| Detected (gate1) | ref J
Handling Alert

| th
| I I
I | |
| ref
| Shutdown System
I
I
I

Cancel Alarmi)

U . U —

FIGURE 10.15

Reference to another interaction.

-i, Simple Quadcopter System

LooP

Sensor Data Stream

:| Data

Senso

Data

Start Survaillance Mode CMD

-?, Simple Quadcopter System

I It
I
I 10s
I
I
ALT I I
I I
[auto]
I I
ref
[ES] Continuous Data Transmission
___ } e e
[manual]
I I
LOOPI I |
I I
PAR [|
| Horizontal Move CMD |
~
I
I
————— l——————————————————————————————————————T———————

Vertical Move CMD

FUNCTIONAL CHAINS

* A functional chain is an ordered set of references to
functions and the functional exchanges that link them,
describing one possible path among all the paths forming
the dataflow.

* A functional chain is used to describe the system
behavior in a particular usage context, to contribute to
one or more system capabilities, and especially to specify
the non-functional expectations on this path (latency
between the chain’s start and end, quality of service,
criticality level, association with a feared event, etc.).

Control nodes can be defined between the sequence links, to express the parallelism
or alternative between several sequences of functions, or, also the iteration or
condition of a sequence to be realized.

[it is the eFFBD]

FUNCTIONAL CHAIN ORCHESTRATION

E Begin D FC1
el0, <Zm |
Begin 1 FC2
ell <Zmn

Begin

 An orchestration is an ordering of functional chains or scenarios expressing
parallelism conditions between them, and the temporal precedence
between some of their elements.

 An orchestration is defined by a set of references to functional chains and

scenarios, and by precedence links between functions or exchanges
belonging to two of them.

RELATION BETWEEN FC AND SCN

@

Verify the
absence of
vehicle in the
crossing

Train def
blocking instruction

Signal departure
@D prohibition to
the train

Train departure
instructiop

\

Vehicle presence status in
the crossing

Road traffic permission
instruction

Release vehicle
® traffic

Stop road traffic
instruction

Stop velficle

D=3 Train feparture instruction

Signal departure

permission to
the train

Stop before the
® crossing

Supervise the
departure
procedure

'i) Stop vehicle
traffic

.i)

Stop before
the crossing

Signal departure
permission to the
train

I |
Stop road traffic instruggon
|

Stop vehicIL information

)1|r—ain departure instructiqn

N

|
ITrain departure instrugtion

| P B ReC/RRL 3. Right Click on the Functional chain and create
== 8 funclonRandtin — the Functional Chain Description Diagram

&2 Functional Chain to Functional Scenario Initialization

@H H Allocation Management
-,

Category »

D=l Influence Patterns Jrer E2 Add Cag > |ackintothefuture & *[SAB)
Load Reusable Resource... = any character, \, = “iagram / Table... > T Function Scenaric L
Select i - L

sie piothefuture.aird Copy Qualified Name sfi:l‘;iisettgi Help Request o jn g
X A R
Removwe from Context = Copy as Description Link Ctrl+Shift+C back into ...
Cut Ctrl+ X
BLACK_BOX Copy Ctrl+C
CONSTRAINT Pazte Ctrl+W
y
INHERITAMC Delete Delete

Jperational Analysi
system Analysis 4F Movelp Ctrl+Pagelp

2. Right click and create do a transition i [Capelle Module |3 5.t Content

2 System Functior

. . oy . . . Sort Selection
Root Syst
to a Functional Scenario Initialization PO & MoveDown ripe
@%[SFED] Undo Ctri+Z
> © 55l e
FET] » @ Request as % Show In Search
. e = » @ Helptoge o Show in Semantic Browser Fa
R — ol _ Helpto ge =
1. Create a functional e - > © He o9 i Do e
1 S, = > @ Bebackin a# Show Impact Analysis...
chain : > © Exist A Sendto Fast Linker View 5
& Ch Ti
; ® Setageg:tinl; ++ Send to Transfer View
» @ Inform Tin B Send to Mass Editing View i
> @ Show curr & Send to Mass Visualization View >

» @& Read curre
, @ Bebackin @ HTML Documentation Generation on selected elements...

4. Click on the Capabilities Functional Scenario in) @ Storttime |) HTML Documenttion Generation

» (&) Receive tir

the Project Explore and create a Function > © Showcur B8 Refiesh B Sub Represetatons

5> @ Inform Tin %21 Remove Hidden Elements

Scenario > @ Inform T oo\ lidate Model

5> @ Show curr

5 [SDFB]Ro B REC/RPL N
& [SFBD] Roi [E Patterns R
% Capabilities Transitions N

@ Travel throug
» [[FS] Travel
» FH [ES] Travel
> FH [ES] Travel Fragment...
» FH [ES] Travel
w [FH [F5] Funct.

Wizards ¥

Allecation Management operties i Information 32 &

Scenario) [FS] Functional

Progress Monitoring > ncing Elements

—— =
= | =5
=0 LS

Final Considerations

	Untitled Section
	Slide 1: ARCML Behaviors

	Untitled Section
	Slide 2: Review
	Slide 3: Last Lectures Review
	Slide 4: Motivation
	Slide 5

	Summary Section
	Slide 6: Summary

	Reactive Systems
	Slide 7: Reactive Behavior (Statemachines)
	Slide 8: Reactive system definition
	Slide 9: REACTIVE SYSTEMS EXAMPLES
	Slide 10: Cause and effect chains
	Slide 11: Events, conditions and actions
	Slide 12: Stimuli
	Slide 13: Response
	Slide 14: Summary
	Slide 15: State Machines
	Slide 16: Example
	Slide 17: A game example
	Slide 18: So
	Slide 19: States
	Slide 20: Specifying states
	Slide 21: Transition
	Slide 22: Trigger
	Slide 23: Guard
	Slide 24: Effect
	Slide 25: Initialization and completion
	Slide 26: Routing transitions using pseudo states
	Slide 27: Routings
	Slide 28: Composite states – single region
	Slide 29: Composite states – single region (two substates)
	Slide 30: Composite states – concurrence
	Slide 31: Composite states – concurrence
	Slide 32: Firing order
	Slide 33: History pseudostate
	Slide 34: MODES AND STATES
	Slide 35: Modes
	Slide 36
	Slide 37: States
	Slide 38
	Slide 39: Configuration
	Slide 40
	Slide 41: Scenario
	Slide 42: Example of situations
	Slide 43

	Use cases
	Slide 44: Use Cases (Capabilities)
	Slide 45: Use case introduction
	Slide 46: Example use case diagram
	Slide 47: Actors
	Slide 48: Use cases
	Slide 49: Use case relationships (inclusion / extension / classification)
	Slide 50: A set of use cases for the Surveillance System
	Slide 51: Use case description

	Sequences
	Slide 52: Sequence (Scenarios)
	Slide 53: SEQUENCE INTRODUCTION
	Slide 54
	Slide 55: Sequence diagram  Scenarios
	Slide 56: Messages
	Slide 57
	Slide 58: Example
	Slide 59: Executions
	Slide 60: Representing time
	Slide 61: FRAGMENTS
	Slide 62: PARALLEL
	Slide 63: ALTERNATIVES
	Slide 64: LOOP
	Slide 65: Complex interactions described using interaction operators
	Slide 66: Reusing of fragments
	Slide 67: Using references
	Slide 68
	Slide 69: FUNCTIONAL CHAINS
	Slide 70: Functional chains and sequence diagrams
	Slide 71: FUNCTIONAL CHAIN WITH CONTROL NODES
	Slide 72: FUNCTIONAL CHAIN ORCHESTRATION
	Slide 73: RELATION BETWEEN FC AND SCN
	Slide 74

	Untitled Section
	Slide 75: Final Considerations

