
IEA-P – DEPARTAMENTO DE PROJETOS
(PROJECT DEPARTMENT)

ARCML BEHAVIORS
Session 07

Prepared by Prof. Dr. Christopher Shneider Cerqueira

Review

Last Lectures Review

1. Systems Engineering Basics
• Stk – Lifecycle – CONOPs –

Functions – Architecture – V&V

• Classical Representations

2. Path to SE Digitalization
• Meta(meta)models

• Language

• Methodologies

• OPM

•ARCML Diagram
• Block Diagram
• Class Diagram

•ARCML defines the use of two “diagram styles” to create
functional/component architectures
• Trees/layers

•Differently from OPM, even though functions are
somehow behaviors. The diagramas do not show the
component behavior over time. It is implemented three
ways:
• Reactive Behavior (Statemachines) descriptions
• Use case (Capabilities) descriptions
• Sequence (Scenarios) descriptions

Motivation

5

Summary

Reactive Behavior
(Statemachines)

•A reactive system is a system that, when switched on, is
able to create desired effects in its environment by
enabling, enforcing, or preventing events in the
environment.

•Properties:
• Continuous interaction (nonterminating)
• System will respond to external stimuli, and
• the response depends of its current state

Reactive system definition

•REAL TIME SYSTEMS – the answer depends on the time.
Ex.: control software, elevator control, ATMs
• SAFETY-CRITICAL SYSTEMS – malfunctional behaviors can

lead to lost of lives. Ex.: bio-physical systems, onboard
computers (car/aircraft/spacecraft/ship)

• EMBEDDED SYSTEMS – implementation restrictions. Ex.:
mobile, onboard software-firmware, IoT.

• Systems that manage critical infrastructures: air
management, train, nuclear reactors, so on.

REACTIVE SYSTEMS EXAMPLES

• The function of a
reactive system is to
respond to the
occurrence of
events or
conditions in the
environment by
causing desirable
changes in the
environment.

Cause and effect chains

• EVENT – something that happens in the world.
• EXTERNAL EVENTS: discrete change in the condition of the

environment
• TEMPORAL EVENTS: passage of a significant time to which the

system is expected to respond

•CONDITION – state of the world that persists for some
nonzero period of time.

•ACTIONS – events from the point of view of the initiator

Events, conditions and actions

• The stimulus of a system is an event at the interface of
the system caused by the environment.

• External events occur somewhere in the environment;
stimuli occur at the interface of the system

Stimuli

• The reactive system responds to an external or temporal
event by updating its state or producing an output.

•An output reponse of a system is an event at the
interface of the system, caused by the system.

• The desired effect of the stimulus may consist of one or
more desired actions, to be caused by several responses.

Response

Summary

Temporal EventsEvents-Stimuli

State Machines

• A finite-state machine (FSM) or finite-state automaton (FSA,
plural: automata), finite automaton, or simply a state machine,
is a mathematical model of computation.

• It is an abstract machine that can be in exactly one of a
finite number of states at any given time.

• The FSM can change from one state to another in response to
some external inputs; the change from one state to another is
called a transition.

• An FSM is defined by a list of its states, its initial state, and the
conditions for each transition.

https://en.wikipedia.org/wiki/Finite-state_machine

Example

Current
State

Input Next State Output

Locked
coin Unlocked

Unlocks the turnstile so
that the customer can push
through.

push Locked None

Unlocked

coin Unlocked None

push Locked
When the customer has
pushed through, locks the
turnstile.

A game example FSM representing the brain of
an enemy.

https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-implementation--
gamedev-11867

• State machines are typically used to describe the state-
dependent behavior of a block throughout its lifecycle,
which is defined in terms of its states and the transitions
between them.
• The state machine defines how the block’s behavior

changes as it transitions between different states and
while the block is in different states.

• State machines can be used to describe a wide range of
state-related behavior, from the behavior of a simple
lamp switch to the complex modes of an advanced
aircraft

So

• A state is a constraint or a situation in the life cycle of an object, in
which a constraint holds, the object executes an activity or waits
for an event.

• There are several characteristics of states in general, regardless of
their types:
• State represent the conditions of objects at certain points in time.
• A state is often associated with an abstraction of attribute values of an

entity satisfying some condition(s).
• An entity changes its state not only as a direct consequence of the current

input, but it is also dependent on some past history of its inputs.

States

• REGION: describe the state-related
behavior of the state machine.
• STATE: represents some significant

condition in the life of a block, typically
because it represents some change in how
the block responds to events and what
behaviors it performs.
• Each state may contain entry and exit

behaviors that are performed whenever the
state is entered or exited, respectively. In
addition, the state may contain a do
behavior that executes once the entry
behavior has completed

Specifying states

• Transition lines depict the movement from one state to
another. Each transition line is labeled with the event that
causes the transition.
•Understanding state transitions is part of system analysis

and design

•Multiple transitions occur either when different events
result in a state terminating or when there are guard
conditions on the transitions
•A transition without an event and action is known as

automatic transitions

Transition

• A trigger identifies the possible stimuli that cause a transition
to occur. SysML has four main kinds of triggering events.
• A signal event indicates that a new asynchronous message

corresponding to a signal has arrived.
• A signal event may be accompanied by several arguments that can

be used in the transition effect.
• A time event indicates either that a given time interval has passed

since the current state was entered (relative) or that a given
instant in time has been reached (absolute).

• A change event indicates that some condition has been satisfied
(normally that some specific set of attribute values hold).

• A call event indicates that an operation on the state machine’s
owning block has been requested. A call event may also be
accompanied by several arguments

Trigger

• The transition guard contains an expression that must
evaluate to true for the transition to occur. The guard is
specified using a constraint, which includes a textual
expression to represent the guard condition.

• When an event satisfies a trigger, the guard on the transition is
evaluated.
• If the guard evaluates to true, the transition is triggered;
• if the guard evaluates to false, then the event is consumed with no

effect.

• Guards can test the state of the state machine using the
operators in (state x) and not in (state x).

Guard

• The effect is a behavior executed during the transition
from one state to another.

• The transition effect can be an arbitrarily complex
behavior that may include send signal actions or
operation calls used to interact with other blocks.
• If the transition is triggered, first the exit behavior of the

current (source) state is executed, then the transition effect
is executed, and finally the entry behavior of the target state
is executed.

Effect

• The initialization and completion of a region are described
using an initial pseudostate and final state, respectively.
• An initial pseudostate is used to determine the initial state of a

region.
• When the active state of a region is the final state, the region

has completed, and no more transitions take place within it.
Hence, a final state can have no outgoing transitions.
• The terminate pseudostate is always associated with the state

of an entire state machine. If a terminate pseudostate is
reached, then the behavior of the state machine terminates. A
terminate pseudostate has the same effect as reaching the
final states of all the state machine’s regions.

Initialization and completion

• There are a variety of situations when a simple transition
directly between two states is not sufficient to express the
required semantics.
• A junction pseudostate is used to construct a compound transition

path between states. The compound transition allows more than
one alternative transition path between states to be specified,
although only one path can be taken in response to any single
event.

• The choice pseudostate also has multiple incoming transitions and
outgoing transitions and, like the junction pseudostate, is part of a
compound transition between states. The behavior of the choice
pseudostate is distinct from that of a junction pseudostate in that
the guards on its outgoing transitions are not evaluated until the
choice pseudostate has been reached.

Routing transitions using pseudo states

Routings

•Arguably the most common situation is a composite
state that has a single region.
• A region typically will contain an initial pseudostate and a

final state, a set of pseudostates, and set of substates, which
may themselves be composite states.

• If the region has a final state, then a completion event is
generated when that state is reached.

•A composite state may have many regions, which may
each contain substates.

Composite states – single region

Composite states – single region (two substates)

•When an orthogonal composite state is active, each
region has its own active state that is independent of the
others, and any incoming event is independently analyzed
within each region.
• A transition that ends on the composite state will trigger

transitions from the initial pseudostate of each region, so
there must be an initial pseudostate in each region for such a
transition to be valid.

• Similarly, a completion event for the composite state will
occur when all the regions are in their final state.

Composite states – concurrence

Composite states – concurrence

• It is possible that the same event may trigger transitions
at several levels in a state hierarchy, and with the
exception of concurrent regions, only one of the
transitions can be taken at a time. Priority is given to the
transition whose source state is innermost in the state
hierarchy.

Firing order

• In some design scenarios, it is desirable to handle an
exception event by interrupting the behavior of the
current region, responding to the event, and then
returning back to the state that the region was in at the
time of the interruption.
• A deep history pseudostate records the states of all regions in

the state hierarchy below and including the region that owns
the deep history pseudostate.

• A shallow history pseudostate only records the top-level state
of the region that owns it.

History pseudostate

MODES AND STATES
Modeling system modes, states, configurations with Arcadia and Capella: method
and tool perspectives - 27th Annual INCOSE International Symposium (IS 2017)

34

Modes

• The definition of the system’s expected behavior (or therefore,
of one of the elements mentioned earlier) in situations
decided from the design is captured in the form of system
modes; each mode is characterized principally by the
functional content expected of the system in this mode (as a
mnemonic, we talk of a “mode of life” to express the different
expectations, priorities and activities in a life, and a “mode of
transport” to indicate the means of travel).

• A mode can convey various concepts, such as a mission or
process stage, a particular behavior required of the system,
conditions of use such as a test or maintenance mode, a
training mode, etc.

35

M
O

D
ES

 A
N

D
 S

TA
TE

S

•As its principal modes,
the traffic control system
will naturally have the
modes characterizing
the principal situations it
should manage: train
departure, train arrival
and road traffic.

36

M
O

D
ES

 A
N

D
 S

TA
TE

S

States

• In the course of its life and use, the system also passes
through some states it undergoes (we say, “What a state you
are in!” and we speak of a “state of alert or of emergency” to
indicate an unexpected situation).

• Most often, a state characterizes mostly structural elements
(presence or absence of a component, availability or
breakdown, integrity or lack of it, availability of an external
actor or loss of connection with it, etc.).
• Transition from one state to another is often involuntary, and

will therefore result, for example, in a change in property for
one or more elements in the system (availability/unavailability
for example).

37

M
O

D
ES

 A
N

D
 S

TA
TE

S

• The level crossing can be found in a state occupied by a
vehicle stuck on the track, or on the contrary, free (as
expressed by the states of the control system itself). This
situation is of course foreseen, but not on the initiative of
the system, so it is undergone by the system, which must
consequently react.

38

M
O

D
ES

 A
N

D
 S

TA
TE

S

Configuration

• To characterize the system when it is in a given mode or
state, we will define the notion of configuration: a
configuration identifies a set of model elements, of all
types (for example functions, components, exchanges,
etc.), globally involved in use of the configuration, at a
given instant. A configuration can be attached to one or
more modes and/or states.

39

M
O

D
ES

 A
N

D
 S

TA
TE

S

•A configuration intended to describe the expectation of a
mode will tend to be (though not exclusively) function
dominant (capabilities, functions, exchanges, functional
chains and scenarios, etc.) to express the expected
functional content – or if it is easier to express, the
functional content not present in this mode.

•A configuration intended to describe a state may be
structural dominant (hosting physical components,
physical links, indeed behavioral components hosted on
the former, etc.), but could also include functional
aspects, depending on the nature of the states
considered (for example attack or failure scenarios, from a
security viewpoint).

40

M
O

D
ES

 A
N

D
 S

TA
TE

S

Scenario

• It is therefore necessary to define the combination of these
states and modes to be able to study their consequences. For
this, we will use the notion of a situation of superposition. A
situation is defined as a logical combination of modes and
states (for example (mode1 AND state1) OR (mode2 AND
(state2 OR state3)), which would express the superposition of
modes and states likely to occur at a given instant.

• A scenario can mention the transition from one situation of
superposition to another, in the same way as it will mention
changes of states and modes in the course of time.

41

M
O

D
ES

 A
N

D
 S

TA
TE

S

Example of situations

42

M
O

D
ES

 A
N

D
 S

TA
TE

S

43

MEANING OF STATES AND MODES

OA describe either general situations that the organization considered confronts (usually
rather states such as routine conditions, states of crisis, a situation where there is a lack of
resources, for example), or the stages of a mission, or of the organization’s normal functioning
(usually rather modes, such as an airplane’s or space launcher’s stages of flight).

SA describing the expectation on the system, as desired by the customer; they are most often
perceived and employed by the final users. In particular, they capture the different modes and
conditions of use required of the system in different situations, and feared situations, with the
minimal behavior required when facing these situations

LA the system states and modes respond this time to design choices or constraints. New modes
and states reflecting the choices of solutions can appear, which cannot be linked to those of
need analysis.

PA applied to the system, but also to each logical architecture component and to the physical
architecture components linked to it: modes and states, as well as the content of their associated
configurations, should be coherent with traceability links (between functions, between
components, between exchanges triggering transitions, etc.) between both architecture
perspectives.

Use Cases (Capabilities)

• Use cases describe the functionality of a system in terms of
how it is used to achieve the goals of its various users.

• Use cases can also be classified using generalization, but in
addition, one use case may include or extend other use cases.

• The users of a system are described by actors, which may
represent external systems or humans who interact with the
system. Actors are related to the use cases in which they
participate.

•Use cases have been viewed as a mechanism to capture
system requirements in terms of the uses of the system.

45

Use case introduction

46

Example use case diagram

•An actor is used to represent the role of a human, an
organization, or any external system that participates in
the use of some system.
• Actors may interact directly with the system or indirectly

through other actors.
• Actors can be classified using the standard generalization

relationship.

•Actor classification has a similar meaning to the
classification of other classifiable model elements.
• For example, a specialized actor participates in all the use

cases that the more general actor participates in.
47

Actors

• A use case describes the goals of a system from the
perspective of the users of the system.
• The goals are described in terms of functionality that the

system must support. Typically, the use case description
identifies the goal(s) of the use case, a main pattern of use,
and a number of variant uses.

• A use case may cover one or more scenarios that correspond
to how the system interacts with its actors under different
circumstances.

• Actors are related to use cases by communication paths, which
are represented as associations, with some restrictions.

48

Use cases

• The inclusion relationship allows one use case, referred to as the base use
case, to include the functionality of another use case, called the included
use case. The included use case is always performed when the base use
case is performed.

• A use case can also extend a base use case using the extension
relationship. The extending use case is a fragment of functionality that is
not considered part of the base use case functionality. It often describes
some exceptional behavior in the interaction, such as error handling
between subject and actors that does not contribute directly to the goal of
the base use case

• The meaning of classification is similar to that for other classifiable model
elements. One implication, for example, is that the scenarios for the
general use case are also scenarios of the specialized use case. It also
means that the actors associated with a specialized use case can also
participate in scenarios described by a general use case.

49

Use case relationships (inclusion / extension / classification)

50

A set of use cases for the Surveillance System

• A text-based use case description can be used to provide
additional information to support the use case definition. This
description can contribute significantly to the use case’s value.
• A typical use case description may include the following:

• Pre-conditions—the conditions that must hold for the use case to
begin.

• Post-conditions—the conditions that must hold once the use case
has completed.

• Primary flow—the most frequent scenario or scenarios of the use
case.

• Alternate and/or exception flows—the scenarios that are less
frequent or other than nominal. The exception flows may reference
extension points and generally represent flows that are not directly
in support of the goals of the primary flow.

51

Use case description

Sequence (Scenarios)

• Represent the interaction between structural elements in a
model as a sequence of message exchanges.
• A message can represent the invocation of a service on a

system component or the sending of a signal.
• The structural elements of a block are represented by lifelines

on a sequence diagram.
• The sequence diagram describes the interaction between

these lifelines as an ordered series of occurrence
specifications that describe different kinds of occurrences, such
as the sending and receiving of messages, the creation and
destruction of objects, or the start and end of behavior
executions.

53

SEQUENCE INTRODUCTION

54

•A Scenario describes the
behavior of the System in
the context of a particular
Capability.
• Functional Scenario
• Exchange Scenario

55

Sequence diagram → Scenarios

• Even if we do not wish to use this concept, Capella automatically creates
a Capability the first time a Scenario is created, unless of course
Capabilities already exist. In this case, Capella asks to choose one
Capability to attach the new Scenario.

• A sender of an
asynchronous message
continues to execute after
sending the message,
whereas a sender of a
synchronous message waits
until it receives a reply from
the receiver that it has
completed its processing of
the message before
continuing execution.
• An open arrowhead means

an asynchronous message.
• A closed arrowhead means

a synchronous message.
• An arrowhead on a dashed

line shows a reply message.
56

Messages

Message Description Example

Create message

A create message represents the creation of an instance in an
interaction. The create message is represented by the keyword
«create». The target lifeline begins at the point of the create
message.

In a banking scenario, a bank manager might
start a credit check on a client by sending a
create message to the server.

Destroy message

A destroy message represents the destruction of an instance in an
interaction. The destroy message is represented by the keyword
«destroy». The target lifeline ends at the point of the destroy
message, and is denoted by an X.

A bank manager, after starting a credit
check, might close or destroy the credit
program application for a customer.

Synchronous call
message

Synchronous calls, which are associated with an operation, have a
send and receive message. A message is sent from the source lifeline
to the target lifeline. The source lifeline is blocked from other
operations until it receives a response from the target lifeline.

A bank teller might send a credit request to
the bank manager for approval and must
wait for a response before further serving
the customer.

Asynchronous call
message

Asynchronous calls, which are associated with an operation, typically
have only a send message, but can also have a reply message. In
contrast to a synchronous message, the source lifeline is not blocked
from receiving or sending other messages. You can also move the
send and receive points individually to delay the time between the
send and receive events. You might choose to do this if a response is
not time-sensitive or order- sensitive.

A bank customer could apply for credit but
can receive banking information over the
phone or request money from an ATM,
while waiting to hear about the credit
application.

Asynchronous
signal message

Asynchronous signal messages, are associated with a signal. A signal
differs from a message in that there is no operation associated with
the signal. A signal can represent an interrupt or error condition. To
specify a signal, you create an asynchronous call message and change
the type in the message properties view.

A credit agency could send an error signal
message to the bank manager that states a
failure to connect to the credit bureau.

Messages in UML diagrams - IBM Documentation

https://www.ibm.com/docs/en/rsm/7.5.0?topic=diagrams-messages-in-uml

• A customer gives the application for
the loan to the bank teller.

• The bank teller sends the application
to be processed by the bank manager
and waits for the manager to finish.

• The bank manager starts the credit
check program, enters the data, and
waits for the credit agency to send
the results.

• The bank manager receives a
response and sends a message to the
bank teller that states the decision.

• The bank teller sends a message to
the customer about whether the loan
was approved.

• The bank manager closes the credit
agency program and the customer
completes the transaction.

Example

Messages in UML diagrams - IBM Documentation

https://www.ibm.com/docs/en/rsm/7.5.0?topic=diagrams-messages-in-uml

Executions

• The receipt of a
message by a lifeline
may trigger the
execution of a
behavior in the
receiver.
• Activations are

rectangular symbols
overlaid vertically
on lifelines.

59

Representing time
• A time observation refers to

an instant in time
corresponding to the
occurrence of some event
during the execution of the
interaction, and a duration
observation refers to the
time taken between two
instants during the
execution of the interaction.

• A time constraint and a
duration constraint can use
observations to express
constraints involving the
values of those
observations.

60

• More complex patterns of interaction can be modeled using constructs
called combined fragments.
• Par- an operator in which operands can occur in parallel, each following weak

sequencing rules. There is no implied order between occurrences in different
operands.

• Alt/else—an operator in which exactly one of its operands will be selected based
on the value of its guard. The guard on each operand is evaluated before selection,
and if the guard on one of the operands is valid, then that one is selected. If more
than one operand has a valid guard then the selection is nondeterministic. An
optional else fragment is valid only if none of the guards on the other operands are
valid.

• Loop—an operator in which the trace represented by its operand repeats until its
termination constraint is met. A loop may define lower and upper bounds on the
number of iterations as well as the guard expression.

61

FRAGMENTS

• Each parallel path
appears in a separate
compartment within the
combined fragment
frame. The parallel
compartments are
divided by a dashed
line, and the combined
fragment uses the
keyword par.

PARALLEL

• Sometimes two or more Scenarios
are so similar that showing
alternative paths on a single diagram
rather than one per diagram is
desirable. SysML allows Scenarios to
be modelled in this way using
alternative combined fragments.

ALTERNATIVES

• The keyword may be accompanied by
a repetition count specifying a
minimum and maximum count as well
as a guard condition. The loop is
executed while the guard condition is
true but at least the minimum count,
irrespective of the guard condition
and never more than the maximum
count.

• The syntax for loop counts is
• loop minimum = 0, unlimited maximum

• loop(repeat) minimum = maximum =
repeat

• loop(min, max) minimum & maximum
specified, min <= max

LOOP

65

Complex interactions described using interaction
operators

Reusing of fragments

67

Using references

FUNCTIONAL CHAINS

•A functional chain is an ordered set of references to
functions and the functional exchanges that link them,
describing one possible path among all the paths forming
the dataflow.

•A functional chain is used to describe the system
behavior in a particular usage context, to contribute to
one or more system capabilities, and especially to specify
the non-functional expectations on this path (latency
between the chain’s start and end, quality of service,
criticality level, association with a feared event, etc.).

Functional chains and sequence diagrams

FUNCTIONAL CHAIN WITH CONTROL NODES

Control nodes can be defined between the sequence links, to express the parallelism
or alternative between several sequences of functions, or, also the iteration or
condition of a sequence to be realized.
[it is the eFFBD]

FUNCTIONAL CHAIN ORCHESTRATION

• An orchestration is an ordering of functional chains or scenarios expressing
parallelism conditions between them, and the temporal precedence
between some of their elements.

• An orchestration is defined by a set of references to functional chains and
scenarios, and by precedence links between functions or exchanges
belonging to two of them.

RELATION BETWEEN FC AND SCN

1. Create a functional
chain

2. Right click and create do a transition
to a Functional Scenario Initialization

3. Right Click on the Functional chain and create
the Functional Chain Description Diagram

4. Click on the Capabilities Functional Scenario in
the Project Explore and create a Function

Scenario

Final Considerations

	Untitled Section
	Slide 1: ARCML Behaviors

	Untitled Section
	Slide 2: Review
	Slide 3: Last Lectures Review
	Slide 4: Motivation
	Slide 5

	Summary Section
	Slide 6: Summary

	Reactive Systems
	Slide 7: Reactive Behavior (Statemachines)
	Slide 8: Reactive system definition
	Slide 9: REACTIVE SYSTEMS EXAMPLES
	Slide 10: Cause and effect chains
	Slide 11: Events, conditions and actions
	Slide 12: Stimuli
	Slide 13: Response
	Slide 14: Summary
	Slide 15: State Machines
	Slide 16: Example
	Slide 17: A game example
	Slide 18: So
	Slide 19: States
	Slide 20: Specifying states
	Slide 21: Transition
	Slide 22: Trigger
	Slide 23: Guard
	Slide 24: Effect
	Slide 25: Initialization and completion
	Slide 26: Routing transitions using pseudo states
	Slide 27: Routings
	Slide 28: Composite states – single region
	Slide 29: Composite states – single region (two substates)
	Slide 30: Composite states – concurrence
	Slide 31: Composite states – concurrence
	Slide 32: Firing order
	Slide 33: History pseudostate
	Slide 34: MODES AND STATES
	Slide 35: Modes
	Slide 36
	Slide 37: States
	Slide 38
	Slide 39: Configuration
	Slide 40
	Slide 41: Scenario
	Slide 42: Example of situations
	Slide 43

	Use cases
	Slide 44: Use Cases (Capabilities)
	Slide 45: Use case introduction
	Slide 46: Example use case diagram
	Slide 47: Actors
	Slide 48: Use cases
	Slide 49: Use case relationships (inclusion / extension / classification)
	Slide 50: A set of use cases for the Surveillance System
	Slide 51: Use case description

	Sequences
	Slide 52: Sequence (Scenarios)
	Slide 53: SEQUENCE INTRODUCTION
	Slide 54
	Slide 55: Sequence diagram  Scenarios
	Slide 56: Messages
	Slide 57
	Slide 58: Example
	Slide 59: Executions
	Slide 60: Representing time
	Slide 61: FRAGMENTS
	Slide 62: PARALLEL
	Slide 63: ALTERNATIVES
	Slide 64: LOOP
	Slide 65: Complex interactions described using interaction operators
	Slide 66: Reusing of fragments
	Slide 67: Using references
	Slide 68
	Slide 69: FUNCTIONAL CHAINS
	Slide 70: Functional chains and sequence diagrams
	Slide 71: FUNCTIONAL CHAIN WITH CONTROL NODES
	Slide 72: FUNCTIONAL CHAIN ORCHESTRATION
	Slide 73: RELATION BETWEEN FC AND SCN
	Slide 74

	Untitled Section
	Slide 75: Final Considerations

