|IEA-P — DEPARTAMENTO DE PROJETOS

(PROJECT DEPARTMENT)

ARCML

Session 06

Prepared by Prof. Dr. Christopher Shneider Cerqueira

) =
= =
s R

Review

1. Systems Engineering Basics ° O P M

* Stk — Lifecycle — CONOPs —
Functions — Architecture — V&V

* Classical Representations ¢ Simple StrUCture <_> BehaViOr diagram
2. Path to SE Digitalization Y TWO things / ~1O relations

* Meta(meta)models

 Language * Can map almost everything - great

* Methodologies

flexibility comes with great complexity
* |[deal to model during “conversations”

* Well... OPM is nice and has the capability to be the “the-
facto” language...

* The other language competitor is the SysML.
* SysML is not a simple language — has A LOT of details.
* It is not really usable straight out of the box

SEMANA TEORIA INDIVIDUAL PESO GRUPO PESO

1| 7 |Estrutura e Filosofia do Curso
o5-Aug| 1 |O que é Engenharia de Sistemas? INCOSE Al-01 - Resumo Cap 1 - 10%
" ‘o
1 |Elementos da Eng Sis. HB INCOSE
1 |Introducgdo aos diagrams classicos.
2 * (Viagem ao EUA)
o Al-02 - Leitura/Resumo
J paper sobre 10%
representacdes classicas.
3 * (Viagem ao EUA)
o Al-03 - Exercicio sobre
J arquitetura e escrita de 10%
requisitos.
4| 1 |Metodologias de MBSE e uso de modelos.
26-Aw| 1 |Reviséo de UML-SysML. Al-04 - Resumo Artigo de 10%
1 |OPM Metodologias
1 |Arcadia
5| 1 [OPM
o b Al-05 - Lista de exercicios 10%
1
1
6| 7 |Blocos e Classes
] W N— Al-06 - Lista de Exercicios | 20%
1 |Méaquina de Estados
1
7| 7 |Casos de Uso
e o — Al-07 - Lista de Exercicios 20%
1 |Sequéncia
1
8| 7 |Integragéo dos pontos de vistas em um
23-sep| 1 [Associagdo dos artefatos de SE com modelos Al-08 - Resumo sobre Al-08 - Descrigéo e
. . 10% 100%
1 |Analise Operacional Ciclo de Vida de Modelos Contorno do Problema.
1
100% 100%
SEM
30-Sep
5

“&= XP £67-140 - ARCADIA

|

L)] %) https;//norminfo.afnor.org

AFNOR

norm info Recherche : mot clé, sujet, n° norme is E Rl

< Retour
| <reon sovee O 4l

NORME EN REEXAMEN

Technologies de I'information - ARCADIA - Méthode pour l'ingénierie des systémes soutenue par son langage de
modélisation conceptuel - Description Générale - Spécification de la méthode de définition de I'ingénierie et du
langage de modélisation

XP Z67-140
Suivi par la commission : Ingénierie et qualité du logiciel et des systémes
Origine des travaux : Francaise
Type : Expérimentale
Motif : Nouveau document
Résumé : La méthode ARCADIA peut étre appliquée a la définition de la conception de tout type de systéme, en se concentrant sur la description et - . ‘Gl
I'évaluation des propriétés de conception (colt, performance, sécurité, réutilisation, consommation, poids) . X)
Systems Architecture Modeling Model-based System
Vie de la norme with the Arcadia Method and Architecture Engineering
. .
Norme Norme Norme with the Arcadia Method
Enquéte) . Pascal Roques
publique Publiée En réexamen
{— Jean-Luc Voirin
Inserite le : Publiée le : En cours A Practical Guide to Capells
23112017 070372018 ﬁ 2
2 2 %)
.)
L= =i o

Norme XP Z67-140 (afnor.org)

https://norminfo.afnor.org/norme/XP%20Z67-140/technologies-de-linformation-arcadia-methode-pour-lingenierie-des-systemes-soutenue-par-son-langage-de-modelisation/123795

= Founding principles

* all of the engineering stakeholders share the
and the product
in the form of a shared model;

 each specialized type of engineering (for example security,
performance, cost and mass) is formalized as a “viewpoint” in
relation to the requirements from which the proposed architecture is
then verified;

* the rules for the anticipated verification of the architecture are
established in order to verify the architecture as soon as possible;

* co-engineering between the different levels of engineering is
supported by the joint elaboration of models, and the models of the
different levels and specialties are deducted/validated/linked one to

: the other.

Solution Architecture

Specialty
engineering:
safety, perf,
secunty, ...

= Traditionally the SysML has 9 diagrams

SysML
Diagram
[\
Package Requirement Behavior Parametric Structure
Diagram Diagram Diagram Diagram Diagram
- State Block Internal
Activity | | Sequence | | \1ochine | | U8 ©35€ | | pefinition Block
Diagram Diagram : Diagram . .
Diagram Diagram Diagram
FIGURE 3.1

SysML diagram taxonomy.

|
= To simplify... ARCADIA reduced to a few

SysML
Diagram

A\

P Re ent Behavior Pa ic Structure
Diagram Diagram
\ 4 3 2

- State Block Internal
Activity 1| Sequence | | o ping | | USe CaSe |) hotinition Block
Diagram Diagram Di Diagram . .
iagram Diagram Diagram

FIGURE 3.1

SysML diagram taxonomy. \ —

N)
|

-
S |43

.

/

Requirements

ArcML /
Diagrams
. J
Structure Behavior
. J J
N\ 4 N\ 4)) 4
Block Class Scenario Capability Statg
. . (Sequence) (Use Case) Machine
Diagrams Diagram . . :
Diagram Diagram Diagram
J o J o J J .

Fnc/Elem/Fnc+Elem

used to detail the block diagram

Fnc flow / Msg flow

Use Cases
*é
implemented by behavior as
Parts used into States

|—T—| Class | -{')

ko] L

used into used into

Scenarios

detailed into I::l

Common System Engineering
Viewpoints

This time we will cover hierarchy, flow - instantiation

“* Hijera rchy (it does not show interconnections)

* Tree shaped view *Levels

p
A

-

\-

EIIEAEIIEa) aa

.

Can be used to hierarchy of parts or functions

+ Flow - Instantiation (it does not focus on hierarchy)

* Interface-flows / ownerships

) [
CH T
O Ty G

Can be used to show the interconection/flow of parts or functions

Example

Prepared on the Logical
Architecture Layer

yF

& Function Hierarchy Example

@ Fly

@ Move

@ Command

@ Hold Parts

@ Provide Energy

Generate
Forces

Receive
commands

@ Send data

Control
Movement

@ Store Energy

Distribute
Energy

=
EEEEEESEE

“ Instantiated Functions Example

Recharger

Simple Quadcopter System

Onboard Computer Subsystem

2L | Electric Supply Subssystem

@ Send data Racele
commands
- DEFlc 11 =
D chg- -~
pAc 12§
" ‘ D51 cA3
D=3 Functionp ctiorjalExchange 1 ‘D\ﬂ,“é

Propulsion Subsystem

Generate
Forces

&1

Distribute
(@0 Store Energy Energy
nalexc A 4
o : DD Esbei22 DD bsbe
*: Cﬁﬂ I] Ay
T /.

Structure Subsystem

@ Hold Parts

LITT1]

Maintenance Bench

!

Operator Terminal

u|

/' ’BDOO

Mapped Flow Example

Recharger

C

DFc2

Simple Quadcopter System

! Onboard Computer Subsystem

Communication Module

DElc

ml
1
I
1
1

Electric Supply Subssystem

Propulsion Subsystem

Operator Terminal

1
1
1
1
1
1
1
1
1
1
1
A
@Jstructure Subsystem

c7

Maintenance Bench

» Definitions

* The system is an ordered set of elements that work as a whole,
responding to the demand and needs of the customer and the
user, and subject to engineering supported by Arcadia.

* An actor is an entity that is external to the system (human or
otherwise), interacting with it, especially through its interfaces.

* A component is a constituent part of the system, contributing
to its behavior and/or properties, along with other
components and actors external to the system.

* A component can be broken down into subcomponents.

* To generalize, a component can also be allocated to an actor, to

define their interactions and connections with the system or other
actors.

22

c1 C2
[
c1 C2
C1.1 H]\[C2.1
T
T
C1.2
] [

L]

Cc3

[

* Functional analysis is a classic technique widely used by
systems engineers.

* Arcadia and Capella provide methodological guidance
and engineering aids to support this technique that was

left out of SysML.
* The mapping of Capella functions

that specify the expected actions of
the component to which they are allocated.

~# Functions for ARCML

* A function is an action, an operation, or a service, performed by
the system or one of its components, or also by an actor interacting
with the system.

e Executing a function usually produces exchange items expected by other
functions, and to do so requires other items provided by other functions.

. I\/IuIt(iJoIe functions can be grouped into a parent function (they are then
called subfunctions, or child functions, of this function). Symmetrically, a
function can be refinedinto multiple functions.

* This grouping is not a strong relationship of structural decomposition; The
grouping of functions forms only a synthetic representation of them,
essentially for documentary purposes.

* Generally, in a finished model, (without
subfunctions) refer to and carry the expected functional
description.

F1 A 4 F2
O—H
/ -

F1 E F2

F1.1 ? F2.1
F1.2 aé F2.1

F2

[F1.2 r

;: F2.1]

4.* F2.1]

d F1 h 4 F2 A
[F1.1 T ;= F2.1]

. [F1.2 :; c —»é F2.1 J)

@ F1 } [F2 A

. J

 Flow control functions are intermediaries between the source(s)
and the recipient(s), responsible for controlling the conditions of
interaction:

To specify a concurrent broadcast of a source exchange to
multiple recipients, we define a Duplicate function that
transmits the same exchange items to all recipients;

to specify the simultaneous broadcast of some of the swap
items for each recipient selectively, a Split function that routes
each part to a separate recipient;

to specify the selection of one among several potential
recipients, a Route function that transmits (most often subject
to conditions) to each destination only some of the received
exchange items;

to specify the combination of items from multiple trades from
different sources, a Gather function can be a single trade item
combining those received from different sources;

to specify the selection of one source among many, a Select
function that directs only the elements coming from the
selected source (most often subject to conditions)

AyH
A
] B DuplicateElI

A"H
Al B
Al,A2
A2"H
A? |
A
] B Route O
AY"'H
] Bl
l h I:lBl,BZ
Gather
= |
[T B2
] Bl B1louB2
- Select
0 C—N

. ‘ 5 =
= || =

Exchanges

~ |TENS DE TROCAS (EXCHANGE ITENS)

* Um item de troca € um conjunto ordenado de referéncias a elementos
roteados juntos, durante uma interagdo ou troca entre fungdes,
componentes e atores.

* Os itens sdo roteados simultaneamente, nas mesmas condi¢bes, com as
mesmas propriedades nao funcionais. Esses itens sao chamados de dados

e sao caracterizados pela classe a qual pertencem.

* Um item de troca é definido por:

* UM home;

* Alista de elementos do item de troca; cada elemento é definido no item de
troca por um nome, e a classe a qual ele pertence, e se a troca é bidirecional, a
direcao de transmissao (por convencao, "in" na direcao da troca por padrao,
"out" na direcdao oposta, ou "in/out");

e a descricao das condicoes de comunicacao, se necessario, por exemplo, servico,
mensagem, evento, fluxo de dados, dados compartilhados, fluxo de material,
quantidade fisica, etc.

+ TROCAS FUNCIONAIS a1 B

* Pelo menos um item de troca deve ser alocado para cada porta
funcional em uma fungao para caracterizar o conteudo que a
funcao pode produzir ou que ela precisa.

 Este item de troca pode ser compartilhado por varias portas.

e Se uma porta transporta varios itens de troca, entao precisamos
especificar, em cada uma das trocas funcionais conectadas a ela,
o(s) item(ns) realmente roteado(s), que deve ser coerente com os
das portas conectadas pela troca. Alem disso, por conveniéncia, é
possivel comecar alocando um item para uma troca, antes de
propaga-lo para as portas conectadas a ele.

 Recomenda-se definir apenas um unico item em cada troca
funcional.

(i
TP

Exchangeitem |.--
- Datai i
- Data2 .| ""---.

- Data3 \'T‘ "@-@—‘)

Figure 21.2. Allocation of exchange items to functional ports and exchanges

Cli1

-+ Exchanges between components

7

r

C2.1

* The content of an exchange between components is defined
by the exchange items carried over by the functional exchanges

it implements.

* An interface is a set of exchange items that allows two
components (and the system and the actors) to communicate
with each other, according to a communication "contract"

shared between them.

31

* Multiple interfaces can be grouped into a single interface.

32

Behavioral
exchange

>

Father component
Child i
component ol
[]’Delegatic
A
Child el
component [}

Figure 19.2. Behavioral components, ports, exchanges and delegation

33

Interface

Behavioral component
3E
i }'
\
I
's 4
L
Function -
.

‘1 Exchange tem 3 F

; [\| Exchange item b |’

Figure 21.3. Links between exchange elements involved

in the functional and structural description

e

Class Diagrams

Used to improve description of the exchanged items

We can
improve the
overall
description of
the exchanged
items

Simple Quadcopter System

2 || Onboard Computer Subsystem

Communication Module

[
]
1

(Component Exchange)

D=l communication Link

Editing of the properties of a Component Exchange

Propulsion Subsystem
Properties

]

JH

Z Operator Terminal

/Capel la Managemenﬂ Description} Extensionsﬁ

Name : Communication Link

Summary :

Kind :

UNSET ASSEMBLY

Allocated Exchange Items :

Allocated Functional Exchanges :

Realized Component Exchanges :

Component Exchange Categories :

DELEGATION © FLOW

<undefined>

<undefined>

<undefined>

<undefined>

wew

wew

wew

e

X X X X

-

«- mlm

-

= (Class Diagrams

* The way that Arcadia defined the Exchange item
description was using the Class Diagram.

* The Class Diagram is a way to create complex data
structures, that in this case, is used to define the
Exchange Items.

* This is the only use... up until now.

(7 External Interfaces (Q) RFInterface

.

LD RF Signal(ExchangeltemElement 1:RF Class Data)J

3 RF Signal

¢

1
ExchangeltemElement 1

1
(General Data Exchangel 1

()

1
1
|
A J
g RF Class Data

]

@ op01(INOUT Parameter 1:Integer, IN Date:Date)

\I LiteralNumericValue 1 = <undefined>

rF (ﬁass Data

imeSta

(7= CommonData

= Y "C: .
=2, ,«% https://www.visual-

~ Fast UML Class Diagram catch-up e

language /uml-class-diagram-tutorial/

* The UML Class diagram is a graphical notation used to
construct and visualize object oriented systems. A class
diagram in the Unified Modeling Language (UML) is a type
of static structure diagram that describes the structure of
a system by showing the system'’s:

e classes,

 their attributes,

e operations (or methods),

* and the relationships among objects.

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/

< AClass is a blueprint for an object

T . Create instance

Dog | —— Bobby

Propertiez Methods Property Values Methods
Color Sit Color: Yellow Sit

Eye Color Lay Down Eyve Color: Brown Lay Down
Height shake Height: 17 in Shake
Length Come Length: 35 in Come

Weight Weight: 24 pounds

~+ UML Class Notation

* A class represent a concept which encapsulates state
(attributes) and behavior (operations). Each attribute has
a type. Each operation has a signature. The class name is
the only mandatory information.

Name
Shape Shape
Attribute(s) = =—»fiengih -length : int
+getLength() +getLength() : int
Operation(s) =— =—»[*ssilengthi) +setLengthin : int) : void

Class without signature Class with signature

Wy ClassMame has 3 atfributes
and 3 operatfions

op2 returns a float

= o3 refums a pointer
{denoted by a *] to Classé

Parameter p3 of op is of type int

=» Class Visibility

*The +, - and # symbols before an attribute and operation
name in a class denote the visibility of the attribute and
operation.

* + denotes public attributes or operations
- denotes private attributes or operations
* i denotes protected attributes or operations

Public Attribute

Private Attribute =— =

r
Protected Afiributes

* A class may be
involved in one or
more relationships
with other classes. A
relationship can be
one of the following
types:

Association

Inheritance

Realization

Dependency

Aggregation

Composition

* A generalization is a
taxonomic relationship
between a more general
classifier and a more specific
classifier. Each instance of the
specific classifier is also an
indirect instance of the
general classifier. Thus, the
specific classifier inherits the
features of the more general
classifier.

=+ |nheritance (or Generalization):

Shape

[L

Polygon

Elli pse

Spline

Style 1: Separate target

Shape

N

Polygon

Elli pse

Spline

Style 2: Shared target

* Associations are
relationships between
classes. Associations
are typically named
using a verb or verb
phrase which reflects
the real world
problem domain.

Class1

—O

Class?

0.1

Exactly one

lero or one

Iero or more

1 or more

{ord ered)

Ordered

* A special type of
association.

* It represents a "part of"
relationship.

* Class2 is part of Class1.

* Many instances (denoted by
the *) of Class2 can be
associated with Class1.

* Objects of Class1 and Class2
have separate lifetimes.

O

Class1

Class2

* A special type of O Py —O

aggregation where parts are g -
destroyed when the whole
is destroyed.

* Objects of Class2 live and
die with Classl1.

* Class2 cannot stand by
itself.

= Absiract Class

Aggregation Cluss

Boundary Class
I

+ = = (Generalization

Aftribute | |

Association = = = »

Control class

Operation Eumpnsmun

And into our case

(7 External Interfaces

[o RF Interface]

LD RF Signal(ExchangeltemElement 1:RF Class Data)J

3 RF Signal

ExchangeltemElement 1

!

Onboard Computer Subsystem

Communication Module

D=3 communication Link

(/= Componer

gL]| Logical
Operator Terminal 4 Co?npo

g » 4LA Logical

. D=1 Compo
Exchan

(7 CommonData

(= DataPkg
1
I
Q General Data Exchange 1 E Ti
1 A
i imeStamp
J
p v
Q RF Class Data]
datey
op01(INOUT Parameter 1:Integer, IN Date:Date;
83 op01(g) B oste
\Z LiteralNumericValue 1 = <undefined>
rF Class Data

rF Sipnal Data

(Component Exchange)

Editing of the properties of a Component Exchange

psids Propulsion Subsystem

Properties

Capella Managemenﬂ Description} Extensions]

ICommunication Link

Summary :

Kind :

™~ UNSET

ASSEMBLY

Allocated Exchange Items :

l » [] InOut F

- Onboard Computer Subsystem

. L | Communication Module
l I
l

(Component Port)

Editing of the properties of a Component Port

CE [Capella Managemenﬂ Description\ Extensions}

— Name : CP3

ummary :

Provided Interfaces : { RF Interface

Required Interfaces : <undefined>

Allocated Ports : <undefined>

>
[>]
2]
[>]

Realized Ports : <undefined>

—— =
= | =5
=0 LS

Final Considerations

Fmal Consideration

* The block diagrams are used to represent functional and
component (forms) architectures

* They are the simplest format to do systems engineering
that I’'m aware. If you like, research how the SysML

implements those elements.
* With a little effort you can create DSMs / eFFBDs / Activity
Diagrams / so on..

* The exchanges are the key on the Arcadia, so define it
well...

	Untitled Section
	Slide 1: ARCML

	Untitled Section
	Slide 2: Review
	Slide 3: Last Lectures Review
	Slide 4: Motivation
	Slide 5
	Slide 6: XP Z67-140 - ARCADIA
	Slide 7: Founding principles
	Slide 8
	Slide 9: Traditionally the SysML has 9 diagrams
	Slide 10: To simplify... ARCADIA reduced to a few
	Slide 11: New viewpoint taxonomy
	Slide 12: Giving another view

	Untitled Section
	Slide 13: Common System Engineering Viewpoints
	Slide 14: Hierarchy (it does not show interconnections)
	Slide 15: Flow - Instantiation (it does not focus on hierarchy)

	Examples
	Slide 16: Example
	Slide 17: Function Hierarchy Example
	Slide 18: Part Hierarchy Example
	Slide 19: Instantiated Functions Example
	Slide 20: Mapped Flow Example
	Slide 21: Definitions
	Slide 22
	Slide 23: Functional Analysis
	Slide 24: Functions for ARCML
	Slide 25
	Slide 26: Flow Controls

	Interfaces / Exchanges
	Slide 27: Exchanges
	Slide 28: ITENS DE TROCAS (EXCHANGE ITENS)
	Slide 29: TROCAS FUNCIONAIS
	Slide 30
	Slide 31: Exchanges between components
	Slide 32
	Slide 33

	Diagrama de classes
	Slide 34: Class Diagrams
	Slide 35
	Slide 36: Class Diagrams
	Slide 37
	Slide 38: Fast UML Class Diagram catch-up
	Slide 39: A Class is a blueprint for an object
	Slide 40: UML Class Notation
	Slide 41
	Slide 42: Class Visibility
	Slide 43
	Slide 44: Relationships
	Slide 45: Inheritance (or Generalization):
	Slide 46: Association
	Slide 47: Aggregation
	Slide 48: Composition
	Slide 49: Class Diagram Example: GUI
	Slide 50: And into our case:

	Untitled Section
	Slide 51: Final Considerations
	Slide 52: Final Consideration

