
IEA-P – DEPARTAMENTO DE PROJETOS
(PROJECT DEPARTMENT)

ARCML
Session 06

Prepared by Prof. Dr. Christopher Shneider Cerqueira

Review

Last Lectures Review

1. Systems Engineering Basics
• Stk – Lifecycle – CONOPs –

Functions – Architecture – V&V

• Classical Representations

2. Path to SE Digitalization
• Meta(meta)models

• Language

• Methodologies

•OPM
• Simple Structure <-> Behavior diagram
• Two things / ˜10 relations
• Can map almost everything - great

flexibility comes with great complexity
• Ideal to model during “conversations”

•Well... OPM is nice and has the capability to be the “the-
facto” language...

• The other language competitor is the SysML.
• SysML is not a simple language – has A LOT of details.
• It is not really usable straight out of the box

Motivation

5

6

XP Z67-140 - ARCADIA

Norme XP Z67-140 (afnor.org)

https://norminfo.afnor.org/norme/XP%20Z67-140/technologies-de-linformation-arcadia-methode-pour-lingenierie-des-systemes-soutenue-par-son-langage-de-modelisation/123795

Founding principles

• all of the engineering stakeholders share the same methodology, the
same information, the same description of the need and the product
in the form of a shared model;

• each specialized type of engineering (for example security,
performance, cost and mass) is formalized as a “viewpoint” in
relation to the requirements from which the proposed architecture is
then verified;

• the rules for the anticipated verification of the architecture are
established in order to verify the architecture as soon as possible;

• co-engineering between the different levels of engineering is
supported by the joint elaboration of models, and the models of the
different levels and specialties are deducted/validated/linked one to
the other.7

8

Traditionally the SysML has 9 diagrams

To simplify... ARCADIA reduced to a few

1

234

ArcML
Diagrams

Structure

Block
Diagrams

Class
Diagram

Behavior

Scenario
(Sequence)

Diagram

Capability
(Use Case)
Diagram

State
Machine
Diagram

New viewpoint taxonomy

Requirements

Fnc/Elem/Fnc+Elem Fnc flow / Msg flowused to detail the block diagram

Giving another view

Use Cases

Scenarios

Parts States

Class

detailed into

implemented by

used into used into

used into

behavior as

Common System Engineering
Viewpoints
This time we will cover hierarchy, flow - instantiation

Hierarchy (it does not show interconnections)

• Tree shaped view • Levels

A

B C

A

B

D E

C

F G

D

E

F

G

Can be used to hierarchy of parts or functions

A

• Interface-flows / ownerships

Flow - Instantiation (it does not focus on hierarchy)

C

E

D

Can be used to show the interconection/flow of parts or functions

C

E

D

F

G

E

D

Example
Prepared on the Logical
Architecture Layer

Function Hierarchy Example

Part Hierarchy Example

Instantiated Functions Example

Mapped Flow Example

• The system is an ordered set of elements that work as a whole,
responding to the demand and needs of the customer and the
user, and subject to engineering supported by Arcadia.

• An actor is an entity that is external to the system (human or
otherwise), interacting with it, especially through its interfaces.

• A component is a constituent part of the system, contributing
to its behavior and/or properties, along with other
components and actors external to the system.
• A component can be broken down into subcomponents.
• To generalize, a component can also be allocated to an actor, to

define their interactions and connections with the system or other
actors.

Definitions

21

22

C1 C2

C1 C2

C1.1

C1.2

C2.1

C3

Functional Analysis

• Functional analysis is a classic technique widely used by
systems engineers.

•Arcadia and Capella provide methodological guidance
and engineering aids to support this technique that was
left out of SysML.

• The mapping of Capella functions is the most natural in
terms of semantics.

• Functions are verbs that specify the expected actions of
the component to which they are allocated.

23

• A function is an action, an operation, or a service, performed by
the system or one of its components, or also by an actor interacting
with the system.
• Executing a function usually produces exchange items expected by other

functions, and to do so requires other items provided by other functions.
• Multiple functions can be grouped into a parent function (they are then

called subfunctions, or child functions, of this function). Symmetrically, a
function can be refinedinto multiple functions.

• This grouping is not a strong relationship of structural decomposition; The
grouping of functions forms only a synthetic representation of them,
essentially for documentary purposes.

• Generally, in a finished model, only the leaf functions (without
subfunctions) refer to and carry the expected functional
description.

Functions for ARCML

24

F1 F2

F1 F2

F1 F2

F1.1

F1.2

F2.1

F2.1

F1.1

F1.2

F2.1

F2.1

F1 F2

F1.1

F1.2

F2.1

F2.1

F1 F2

• Flow control functions are intermediaries between the source(s)
and the recipient(s), responsible for controlling the conditions of
interaction:
• To specify a concurrent broadcast of a source exchange to

multiple recipients, we define a Duplicate function that
transmits the same exchange items to all recipients;

• to specify the simultaneous broadcast of some of the swap
items for each recipient selectively, a Split function that routes
each part to a separate recipient;

• to specify the selection of one among several potential
recipients, a Route function that transmits (most often subject
to conditions) to each destination only some of the received
exchange items;

• to specify the combination of items from multiple trades from
different sources, a Gather function can be a single trade item
combining those received from different sources;

• to specify the selection of one source among many, a Select
function that directs only the elements coming from the
selected source (most often subject to conditions)

26

Flow Controls Duplicate
A

A

A

Split
A1,A2

A1

A2

Route
A

A?

A?

Gather

B1

B2

B1,B2

Select

B1

B2

B1 ou B2

Exchanges

• Um item de troca é um conjunto ordenado de referências a elementos
roteados juntos, durante uma interação ou troca entre funções,
componentes e atores.

• Os itens são roteados simultaneamente, nas mesmas condições, com as
mesmas propriedades não funcionais. Esses itens são chamados de dados
e são caracterizados pela classe à qual pertencem.

• Um item de troca é definido por:
• um nome;
• A lista de elementos do item de troca; cada elemento é definido no item de

troca por um nome, e a classe à qual ele pertence, e se a troca é bidirecional, a
direção de transmissão (por convenção, "in" na direção da troca por padrão,
"out" na direção oposta, ou "in/out");

• a descrição das condições de comunicação, se necessário, por exemplo, serviço,
mensagem, evento, fluxo de dados, dados compartilhados, fluxo de material,
quantidade física, etc.

ITENS DE TROCAS (EXCHANGE ITENS)

28

• Pelo menos um item de troca deve ser alocado para cada porta
funcional em uma função para caracterizar o conteúdo que a
função pode produzir ou que ela precisa.
• Este item de troca pode ser compartilhado por várias portas.

• Se uma porta transporta vários itens de troca, então precisamos
especificar, em cada uma das trocas funcionais conectadas a ela,
o(s) item(ns) realmente roteado(s), que deve ser coerente com os
das portas conectadas pela troca. Além disso, por conveniência, é
possível começar alocando um item para uma troca, antes de
propagá-lo para as portas conectadas a ele.

• Recomenda-se definir apenas um único item em cada troca
funcional.

TROCAS FUNCIONAIS F1.1 F2.1

29

• The content of an exchange between components is defined
by the exchange items carried over by the functional exchanges
it implements.

• An interface is a set of exchange items that allows two
components (and the system and the actors) to communicate
with each other, according to a communication "contract"
shared between them.

• Multiple interfaces can be grouped into a single interface.

Exchanges between components
C1.1 C2.1

31

32

33

Class Diagrams
Used to improve description of the exchanged items

We can
improve the
overall
description of
the exchanged
items

• The way that Arcadia defined the Exchange item
description was using the Class Diagram.

• The Class Diagram is a way to create complex data
structures, that in this case, is used to define the
Exchange Items.

• This is the only use... up until now.

Class Diagrams

• The UML Class diagram is a graphical notation used to
construct and visualize object oriented systems. A class
diagram in the Unified Modeling Language (UML) is a type
of static structure diagram that describes the structure of
a system by showing the system's:
• classes,
• their attributes,
• operations (or methods),
• and the relationships among objects.

Fast UML Class Diagram catch-up
https://www.visual-
paradigm.com/guide/uml-unified-modeling-
language/uml-class-diagram-tutorial/

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/

A Class is a blueprint for an object

•A class represent a concept which encapsulates state
(attributes) and behavior (operations). Each attribute has
a type. Each operation has a signature. The class name is
the only mandatory information.

UML Class Notation

• The +, - and # symbols before an attribute and operation
name in a class denote the visibility of the attribute and
operation.

• + denotes public attributes or operations

• - denotes private attributes or operations

• # denotes protected attributes or operations

Class Visibility

• A class may be
involved in one or
more relationships
with other classes. A
relationship can be
one of the following
types:

Relationships

• A generalization is a
taxonomic relationship
between a more general
classifier and a more specific
classifier. Each instance of the
specific classifier is also an
indirect instance of the
general classifier. Thus, the
specific classifier inherits the
features of the more general
classifier.

Inheritance (or Generalization):

•Associations are
relationships between
classes. Associations
are typically named
using a verb or verb
phrase which reflects
the real world
problem domain.

Association

•A special type of
association.
• It represents a "part of"

relationship.
• Class2 is part of Class1.
• Many instances (denoted by

the *) of Class2 can be
associated with Class1.

• Objects of Class1 and Class2
have separate lifetimes.

Aggregation

•A special type of
aggregation where parts are
destroyed when the whole
is destroyed.

•Objects of Class2 live and
die with Class1.

•Class2 cannot stand by
itself.

Composition

Class Diagram Example: GUI

And into our case:

Final Considerations

• The block diagrams are used to represent functional and
component (forms) architectures

• They are the simplest format to do systems engineering
that I’m aware. If you like, research how the SysML
implements those elements.
• With a little effort you can create DSMs / eFFBDs / Activity

Diagrams / so on..

• The exchanges are the key on the Arcadia, so define it
well...

Final Consideration

	Untitled Section
	Slide 1: ARCML

	Untitled Section
	Slide 2: Review
	Slide 3: Last Lectures Review
	Slide 4: Motivation
	Slide 5
	Slide 6: XP Z67-140 - ARCADIA
	Slide 7: Founding principles
	Slide 8
	Slide 9: Traditionally the SysML has 9 diagrams
	Slide 10: To simplify... ARCADIA reduced to a few
	Slide 11: New viewpoint taxonomy
	Slide 12: Giving another view

	Untitled Section
	Slide 13: Common System Engineering Viewpoints
	Slide 14: Hierarchy (it does not show interconnections)
	Slide 15: Flow - Instantiation (it does not focus on hierarchy)

	Examples
	Slide 16: Example
	Slide 17: Function Hierarchy Example
	Slide 18: Part Hierarchy Example
	Slide 19: Instantiated Functions Example
	Slide 20: Mapped Flow Example
	Slide 21: Definitions
	Slide 22
	Slide 23: Functional Analysis
	Slide 24: Functions for ARCML
	Slide 25
	Slide 26: Flow Controls

	Interfaces / Exchanges
	Slide 27: Exchanges
	Slide 28: ITENS DE TROCAS (EXCHANGE ITENS)
	Slide 29: TROCAS FUNCIONAIS
	Slide 30
	Slide 31: Exchanges between components
	Slide 32
	Slide 33

	Diagrama de classes
	Slide 34: Class Diagrams
	Slide 35
	Slide 36: Class Diagrams
	Slide 37
	Slide 38: Fast UML Class Diagram catch-up
	Slide 39: A Class is a blueprint for an object
	Slide 40: UML Class Notation
	Slide 41
	Slide 42: Class Visibility
	Slide 43
	Slide 44: Relationships
	Slide 45: Inheritance (or Generalization):
	Slide 46: Association
	Slide 47: Aggregation
	Slide 48: Composition
	Slide 49: Class Diagram Example: GUI
	Slide 50: And into our case:

	Untitled Section
	Slide 51: Final Considerations
	Slide 52: Final Consideration

