
INSTITUTO TECNOLÓGICO DE AERONÁUTICA

Rubens Miguel Gomes Aguiar

ADDING SIMULATION CAPABILITY TO SYSTEMIC

MODELS

Final Paper

2022

Course of Aerospace Engineering

CDU 681.3.064

Rubens Miguel Gomes Aguiar

ADDING SIMULATION CAPABILITY TO SYSTEMIC

MODELS

Advisor

Prof. Dr. Christopher Shneider Cerqueira (ITA)

AEROSPACE ENGINEERING

São José dos Campos
instituto tecnológico de aeronáutica

2022

Cataloging-in Publication Data
Documentation and Information Division

Miguel Gomes Aguiar, Rubens
Adding Simulation Capability to Systemic Models / Rubens Miguel Gomes Aguiar.
São José dos Campos, 2022.
56f.

Final paper (Undergraduation study) – Course of Aerospace Engineering– Instituto Tecnológico
de Aeronáutica, 2022. Advisor: Prof. Dr. Christopher Shneider Cerqueira.

1. Systemic Engineering. 2. Software Engineering. 3. Capella. I. Instituto Tecnológico de
Aeronáutica. II. Title.

BIBLIOGRAPHIC REFERENCE

MIGUEL GOMES AGUIAR, Rubens. Adding Simulation Capability to Systemic
Models. 2022. 56f. Final paper (Undergraduation study) – Instituto Tecnológico de
Aeronáutica, São José dos Campos.

CESSION OF RIGHTS

AUTHOR’S NAME: Rubens Miguel Gomes Aguiar
PUBLICATION TITLE: Adding Simulation Capability to Systemic Models.
PUBLICATION KIND/YEAR: Final paper (Undergraduation study) / 2022

It is granted to Instituto Tecnológico de Aeronáutica permission to reproduce copies of
this final paper and to only loan or to sell copies for academic and scientific purposes.
The author reserves other publication rights and no part of this final paper can be
reproduced without the authorization of the author.

Rubens Miguel Gomes Aguiar
Rua H8B, Ap. 219
12.228-461 – São José dos Campos–SP

ADDING SIMULATION CAPABILITY TO SYSTEMIC

MODELS

This publication was accepted like Final Work of Undergraduation Study

Rubens Miguel Gomes Aguiar

Author

Christopher Shneider Cerqueira (ITA)

Advisor

Profa. Dra. Cristiane Aparecida Martins
Course Coordinator of Aerospace Engineering

São José dos Campos: NOVEMBER 10, 2022.

Soli Deo Gloria.

Acknowledgments

I thank God for guiding me along the way.

To my wife, Diene Xie, for walking the path of life by my side.

To my parents, Miguel and Sara, for giving me life, supporting and encouraging me.

To my friends, Misa, Lustosa, Uchôa, Stitch, Tuzi, Borat, Carlinhos, Greg, Rafa and

Robson Katz.

To Prof. Dr. Christopher Shneider Cerqueira for giving me the opportunity to do this

work.

To my brothers, Rafael, Robson and Ruth for encouraging me since I was little.

To Farias Brito for giving me the opportunity to study and to Professor Wellington

for introducing me to this school.

To Primeira Chance for helping me financially to study.

To Felipe and Dani’s teachers for making my eyes shine through my studies.

“Assim é que são as coisas por aqui.
As coisas vão rolando e não param.”

— Dwight Schrute

Resumo

Na engenharia de sistemas a metolodogia model-based permite a representação de modelos

em alto ńıvel. Nesse contexto, representa-se modelos através de máquinas de estados

visando integrar as diferentes partes do sistema. Por isso, surge a necessidade de efetuar

a simulação das máquinas de estados de forma automatizada, para verificar a integridade

dos modelos criados. Portanto, foi desenvolvida uma extensão em Python para uma das

principais ferramentas de modelagem de engenharia de sistemas, conhecida por Capella,

que permita a simulação de statecharts. Com isso, a ferramenta desenvolvida foi aplicada

em diferentes máquinas de estados para exemplificar seu comportamento prático.

Abstract

In systems engineering, the model-based methodology allows the representation of models

at a high level. In this context, models are represented through state machines in order

to integrate the different parts of the system. Therefore, the need arises to perform the

simulation of state machines in an automated way, to verify the integrity of the created

models. Thus, a Python extension was developed for one of the main systems engineering

modeling tools, known as Capella, that allows the simulation of statecharts. Therefore,

the developed tool was applied in two state machines to exemplify its practical behavior.

List of Figures

FIGURE 2.1 – Relationships, interfaces and entities in domain integration (LOCK-

HEED MARTIN CORPORATION, 2015). 16

FIGURE 3.1 – Simulator Extension Software Architecture. 20

FIGURE 4.1 – State machine of the operating modes of an in-flight entertainment

system. 22

FIGURE 4.2 – State machine that periodically performs subsystem checks. 23

FIGURE 4.3 – Capella Project Explorer. 23

FIGURE 4.4 – Options after right click at project explorer region. 24

FIGURE 4.5 – Simulator’s command interface. 24

FIGURE 4.6 – Simulator’s state machine interface. 25

FIGURE 4.7 – Simulator’s Parser and SM factories. 26

FIGURE 4.8 – Configuration file. 27

FIGURE 4.9 – IFE Operation Modes State Machine steps 1 to 4. 28

FIGURE 4.10 –IFE Operation Modes State Machine steps 5 to 8. 28

FIGURE 4.11 –IFE Operation Modes State Machine steps 9 to 12. 28

FIGURE 4.12 –IFE Operation Modes State Machine steps 13 to 16. 29

FIGURE 4.13 –IFE Operation Modes State Machine steps 17 to 20. 29

FIGURE 4.14 –IFE Operation Modes State Machine steps 21 to 24. 29

FIGURE 4.15 –IFE Operation Modes State Machine steps 25 to 28. 30

FIGURE 4.16 –Checking State Machine steps 1 to 4. 31

FIGURE 4.17 –Checking State Machine steps 5 to 9. 31

FIGURE 4.18 –Checking State Machine steps 9 to 12. 32

LIST OF FIGURES x

FIGURE 4.19 –Checking State Machine steps 13 to 16. 32

FIGURE 4.20 –Checking State Machine steps 17 to 20. 33

FIGURE 4.21 –Checking State Machine steps 21 to 24. 33

FIGURE 4.22 –Checking State Machine steps 25 to 28. 34

List of Abbreviations and Acronyms

MBSE Model-Based System Engineering

SysML Systems Modeling Language

UML Unified Modeling Language

Contents

1 Introduction . 14

1.1 Motivation . 14

1.2 Hypothesis . 14

1.3 Objective . 14

2 Bibliographic Review . 15

2.1 Model-Based Systems Engineering (MBSE) 15

2.2 Statecharts . 17

2.3 Python . 17

2.4 Capella . 18

3 Materials and Methods . 19

3.1 Activities Plan . 19

3.2 Extension development for the Capella tool 19

4 Results and Discussion . 22

4.1 Simulator Operation . 23

4.2 Configuration . 26

4.3 Applications . 27

4.3.1 IFE Operation Modes State Machine 27

4.3.2 Checking State Machine . 30

5 Conclusions . 35

Bibliography . 36

CONTENTS xiii

Appendix A – Simulator Code . 37

A.1 Main . 37

A.2 Simulator . 38

A.3 CapellaModelAPI . 41

A.4 State Machine Model . 44

A.5 Abstract Factory . 46

A.6 Parser Factory . 47

A.7 Sismic Parser . 47

A.8 Abstract SM . 53

A.9 SM Factory . 54

A.10 Sismic SM . 54

A.11 Test Simulator . 55

1 Introduction

1.1 Motivation

Systems engineering arises due to the need to develop complex projects that have

several systems interacting with each other. Indeed, it is of paramount importance that

the systematic models produced can be subjected to extensive critical reviews.

Because of this, there are softwares that help in the process of developing systems engi-

neering projects based on models from the interaction between the systems. Such software

allows engineers to build visual representations of the entities and their interactions in

complex designs.

In this context, Capella software emerges as one of the main tools on the market for

building model-based systems. However, such a tool does not have the ability to simulate

the interactions between the entities of the systems through a state machine logic.

Thus, this work was motivated from the need to perform state machine simulations in

systems engineering projects built in the Capella tool.

1.2 Hypothesis

By creating a Python extension for the Capella tool, allowing systemic models to be

simulated through their state machine logics.

1.3 Objective

The objective of this work is to enable that, during the development of systems en-

gineering projects using the Capella tool, it is possible to perform system simulations

through a state machine logic, through the implementation of a Python extension for the

Capella tool.

2 Bibliographic Review

2.1 Model-Based Systems Engineering (MBSE)

According to (LOCKHEED MARTIN CORPORATION, 2015) a model consists of a sim-

plified version of a concept, structure or system, through a visual representation enabling

an abstraction of a given entity.

Thus, it is possible to use models as an element that abstracts all the complexity

of systems, from requirements, analyses, implementations and verifications, in order to

facilitate the understanding of systems in different scenarios.

In fact, from the combination of representation by models with systems engineering, it

enables a formalized modeling that includes the different phases of the development cycle

of a system: from requirements to simulations or tests (LOCKHEED MARTIN CORPORA-

TION, 2015).

Furthermore, in a systems modeling, preponderant aspects of the system are chosen so

that such aspects, through an abstraction, become the focus of the models (SHEVCHENKO,

2020).

On the other hand, a model must be easy to understand, maintain and use, since

models demonstrate at a high level to stakeholders the design of systems in order to

facilitate understanding and visualization.

This is because the purpose of models is to capture the relationships, interfaces and en-

tities present in a system, thus, according to (SHEVCHENKO, 2020), the modeling covers

requirements relationships, behaviors, architecture, verification and validation, demon-

strating how these domains are related and interconnected, as we can see in the figure

3.1.

CHAPTER 2. BIBLIOGRAPHIC REVIEW 16

FIGURE 2.1 – Relationships, interfaces and entities in domain integration (LOCKHEED

MARTIN CORPORATION, 2015).

Furthermore, an essential feature of MBSE is the formalized language that allows

the understanding of models in different contexts. There are, for example, the Systems

Modeling Language (SysML) and the Unified Modeling Language (UML). Among these,

the SysML language, for being general purpose, has a higher degree of formality, avoiding

some ambiguity (SYSML, 2021), on the other hand, UML is used in system modeling

software such as Capella.

Thus, in MBSE models, based on the standardization of the language used in the

modeling, there is support for the construction of state machine diagrams which allow

the dynamic simulation of systems if, and only if, the models created are mathematically

simulateable (SHEVCHENKO, 2020). This aspect is extremely important, since it allows

analyzing the different states of the models and their transitions, allowing unexpected

behaviors to be identified (SYSML, 2021).

The approach of analyzing models seeking to identify errors or unexpected behavior

is known as Model-Based Review (INNOSLATE, 2017). In fact, the model review process

takes place from the structuring of the capabilities and purposes of each entity involved,

with this, the reviewers can produce inferences, corrections and improvements from an

analysis of the model. However, for an evaluation of the dynamic behavior of the systems

executed state machine diagrams specify dynamic system behaviors for critical situations

in terms of time, mission, safety or financial aspects.

CHAPTER 2. BIBLIOGRAPHIC REVIEW 17

2.2 Statecharts

A state machine consists of a finite number of states containing transitions between

each of the states, such that the current state and the current event produce a new state,

consequently, such a process occurs repeatedly until all possible states occur. In fact, the

concept of state consists of the current characteristics of the system, a state can receive

inputs, when this occurs, due to the reactivity of the state, it produces outputs as actions

to be performed and, if performed, new states are generated (ITEMIS, 2022).

Moreover, for systems that are too complex, there is an approach that uses statecharts

to reduce the complexity of state machines. Statecharts consist of combinations of low-

level state machines compiled in order to create high-level state machines so that the

low-level state machines are orthogonal, that is, not contained within each other. In

addition, communication between state machines must be allowed, so that events output

from one state machine can be input from another (ITEMIS, 2022).

On the other hand, there is a formalism to describe a state machine, therefore, there

is a list of basic concepts that denote specific functions of state machines that can be used

in the construction of a diagram. Among the possible formal languages that describe a

state machine, there is the UML that uses the following concepts to make a description:

initial transition, events, states, actions and transitions, guard conditions, entry actions

and exit actions.

In fact, the initial transition specifies the initial state of the system when it starts

working. Moreover, the events consist of actions that the system receives and that generate

some reaction. The states represent the result of a historical sequence of events transitions

or actions of state and the response given by a state to a given event. The guard conditions

continually evaluate states so that, if their condition is satisfied, they allow transitions

that do not occur if the conditions are not satisfied. At end, run-to-completion execution

model must satisfied, this concept says that the state machine process some event and

just at the end of processing a new event could be start processing, so the events can’t

occur simultaneously (EMBEDDED, 2009).

2.3 Python

Python is a high-level, multipurpose open-source programming language with a wide

variety of available code libraries that uses object-oriented programming initially conceived

in the 1980s (WITMAN, 2021a).

The syntax of the language is simple and intuitive, easy to write and read, becoming

extremely popular over the years, being used in various areas of engineering by large

CHAPTER 2. BIBLIOGRAPHIC REVIEW 18

companies such as Google, NASA and IBM, as it is very versatile and can be used in

many types of applications, including machine learning applications to interface creation.

Since this programming language is extremely versatile, it can be used in website

development, applications, machine learning projects, numerical simulations and data

analysis.

The main Python applications in the modern world consist of data analysis and visual-

ization, since there are widely used libraries that allow the creation of complex statistical

reports and data processes.

In addition, there are applications in the areas of graphical interface construction,

application programming interfaces, artificial intelligence, machine learning, among many

other areas. This demonstrates that the python programming language, in fact, has many

applications validated in different areas of knowledge and by different agents of society.

2.4 Capella

Capella is a modelling tool open-source that used model-based engineering approach to

build a efficient architectural design through a graphical modelling workbench according to

ARCADIA method recommendations (WITMAN, 2021b) . In fact, this software was build

by PolarSys and is used in many enterprises like Embraer and SIEMENS or universities

like ITA (Instituto Tecnológico de Aeronáutica) and UFSM (Universidade Federal de

Santa Maria) (ECLIPSE, 2022).

Moreover, Capella focus on the embedded methodology browser, manage architecture

complexity, model-to-model transformations and has the capacity of extend this environ-

ment with libraries to allows the users creates new features to the tool (WITMAN, 2021b).

In this context, Python4Capella is one of libraries that extend Capella features and

allow users build extension to Capella using Python, a programming language that is easy

to write and read (LABS4CAPELLA, 2022).

The Capella software supports the construction of statecharts using UML, using this

language it is possible to perform dynamic simulations of the behavior of the models

through the interpretation of the state machine built in the tool. When a statecharts is

built, the Capella software still not performs a behavioral simulation engine and, thus, you

can’t get all the states and their respective transitions as responses to triggers resulting

in actions. Thus, information about the life cycle of a system isn’t constructed (SPARX

SYTEMS, 2022).

3 Materials and Methods

3.1 Activities Plan

Initially, a state machine reader is built from the information entered in Capella,

this reader abstracts the constructed state machine and serializes it through the human-

friendly YAML language.

Subsequently, the serialized information is interpreted through the created extension,

enabling the construction of a state object that carries all the logic of the sequential

execution of the statecharts, with this, the state machine is executed.

From that, at each step of the simulation, the information of the new states is coded

again, sent to Capella and, through the construction of a simulation interface, displayed

on the screen denoting the current state and allowing the user to go through the simulation

through an interface.

3.2 Extension development for the Capella tool

The creation of a simulation platform in Capella software was carried out from the

creation of modules that perform different functions, for example, there is a module whose

objective is to be a high-level interface between the Simulator and the Capella software,

this module uses the Python4Capella library functions. On the other hand, the Simulator

is composed of some functions and modules, among them there are modules that build

the command interface and modules that deal with commands generated by the user. The

architecture of this system can be seen in figure 3.1.

CHAPTER 3. MATERIALS AND METHODS 20

Simulator

_load_state_machine()

SM

Configuration File

CapellaModelAPI

Capella

_build_command_interface()

_command_handler()

run()

build_command_interface()

listen()

read_session()

render_states() _render_states()

_command_to_state()

next_step()

previous_step()

automatic()

finalize()

get_session() StateMachineModel

Session

build_steps()

SMFactory

sessions

SM

Parser

ParserFactory

SismicParser SismicSMGenericParser GenericSMGenericParser GenericSM

FIGURE 3.1 – Simulator Extension Software Architecture.

In addition, it was also necessary to create a global state machine logic named SM with

the concepts of step transition, step execution and completion of the simulation process.

This component executes its actions from the interaction with an object whose responsi-

bility is to store the sessions and whose construction is done by the StateMachineModel

module that, from the configurations received from the configuration files and from the

session data of the Capella software, performs through a design pattern known as Factory

the creation of the right Parser and SM objects among the many possibilities of Parsers

and SMs.

The purpose of a Parser is to translate the session information into a language that can

be interpreted by the SM, in fact, the Parser performs a reading of the session information

from the Capella software and organizes this information so that it becomes readable by

the SM. Furthermore, the objective of SM is to determine all the simulation steps defining

all possible transitions and states, for this, a python library known as Sismic was used,

which, from the definition of a document in the YAML extension, performs the simulation

of a state machine generating all the states of that simulation.

Thus, to create this system with the aim of running simulations of state machines, it

was necessary to architect a system in which there was a high-level communication inter-

face between the Simulator and Capella through the Python4Capella library in which it

was possible to execute methods of interface construction and command listening. How-

CHAPTER 3. MATERIALS AND METHODS 21

ever, it was also necessary to create a simulation module named Simulator that would

perform a general management, at a high level, of the state machines, initializing such

machines and controlling the steps through the reception of commands from the Capella

software. Finally, it was also necessary to create the factory design pattern that allows

generalizing the system in such a way that it was possible to couple different modules

that perform the simulation of state machines and, for each of these modules, different

parsers to translate the information from the Capella Session for the coupled simulation

modules.

Furthermore, in order to maintain the quality of the software and its correct function-

ing despite its complex logic, it was necessary to implement a unit testing structure to

verify that each part of the code was functioning as expected. This approach allows the

software to be less affected by changes that cause critical errors and avoids side effects of

eventual implementations that may occur in the future of this software. This approach

also guarantees greater reliability to the execution of the software as it guarantees the co-

hesion of the tested code snippets, with this, a series of tests are created and are executed

with each new modification in the project ensuring its correct operation.

4 Results and Discussion

To analyze the proposed operation of a state machine simulator in Capella software,

two state machines were used, one obtained from an exemplary Capella project and an-

other created to exemplify a checking system that will allow the verification of the simu-

lation extension developed.

The first state machine can be seen in figure 4.1, it reflects the operation of the

operating modes of an in-flight entertainment system.

FIGURE 4.1 – State machine of the operating modes of an in-flight entertainment system.

The second state machine can be seen in figure 4.2, it reflects the functioning of a

system that performs subsystem checks periodically.

CHAPTER 4. RESULTS AND DISCUSSION 23

FIGURE 4.2 – State machine that periodically performs subsystem checks.

4.1 Simulator Operation

To run the simulator, it is necessary to right-click any area within the exploration

region of the projects, as shown in figure 4.3, after that, it is necessary to click on Simu-

lator, as shown in figure 4.4, with this, the simulation will start and a simulation control

interface will be displayed, as shown in figure 4.5.

FIGURE 4.3 – Capella Project Explorer.

CHAPTER 4. RESULTS AND DISCUSSION 24

FIGURE 4.4 – Options after right click at project explorer region.

FIGURE 4.5 – Simulator’s command interface.

CHAPTER 4. RESULTS AND DISCUSSION 25

Furthermore, through the command interface, the user can move between the states

by going to the next simulation step using the NEXT option or by going to the previous

simulation step using the PREVIOUS option. On the other hand, if necessary, the user

can end the simulation using the FINALIZE button. In addition, the user can switch

between which state machine will be shown by clicking in the option with state machine

name.

The simulation results can be observed through images presented within the simulator

area, the first image will be displayed after the first click on the NEXT option, as seen in

the figure 4.6. Moreover, the yellow color represents the current state and the blue color

represents state before the current state.

FIGURE 4.6 – Simulator’s state machine interface.

Through the results presented in the simulation, we can verify which transitions oc-

curred between the states, which are the current states of the simulation and which are

the states prior to the current state.

CHAPTER 4. RESULTS AND DISCUSSION 26

4.2 Configuration

For the operation of the Simulator, it is necessary to configure the simulation, as there

are parameters that can be varied according to the simulation and the user’s objective.

The possible current configurations consist of defining the parser that should be selected

and the simulation module that will be coupled to the platform, in such a way that the

value inserted in the JSON file will be responsible for informing to the factory which type

of Parser and SM it should produce, in figure 4.7 it is possible to observe the operation

of the factory. From the choice of these two parameters, a file with the JSON extension

is created according to figure 4.8.

FIGURE 4.7 – Simulator’s Parser and SM factories.

CHAPTER 4. RESULTS AND DISCUSSION 27

FIGURE 4.8 – Configuration file.

4.3 Applications

Thus, to exemplify the practical operation of the State Machine Simulator, two simu-

lations were performed with the two state machines mentioned in the figures 4.1 and 4.2.

From these machines, a analysis of the execution of the simulations will be carried out. It

is important to note that, for both simulations, the configuration file shown in the figure

4.8 was used, whose parser translates the Capella Session into a YAML file that can be

interpreted by the Sismic library and, later, managed by the simulator.

4.3.1 IFE Operation Modes State Machine

From the execution of the simulation, the first 28 micro steps of the simulation are

shown in the figures 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 e 4.15.

CHAPTER 4. RESULTS AND DISCUSSION 28

FIGURE 4.9 – IFE Operation Modes State Machine steps 1 to 4.

FIGURE 4.10 – IFE Operation Modes State Machine steps 5 to 8.

FIGURE 4.11 – IFE Operation Modes State Machine steps 9 to 12.

CHAPTER 4. RESULTS AND DISCUSSION 29

FIGURE 4.12 – IFE Operation Modes State Machine steps 13 to 16.

FIGURE 4.13 – IFE Operation Modes State Machine steps 17 to 20.

FIGURE 4.14 – IFE Operation Modes State Machine steps 21 to 24.

CHAPTER 4. RESULTS AND DISCUSSION 30

FIGURE 4.15 – IFE Operation Modes State Machine steps 25 to 28.

Therefore, we can observe the coherence of the state machine simulator that achieves

its goal by traversing the transitions and states correctly, according to the state machine

shown in the figure 4.1. In this case, it is worth mentioning the existence of a possible

warning in this state machine, which is the execution of state machines in parallel by

the simulator, as can be seen in the figure 4.11, in which during the execution of the

Maintenance state, Simultaneously, the Final state is executed from the Choice state.

4.3.2 Checking State Machine

From the execution of the simulation, the first 28 micro steps of the simulation are

shown in the figures 4.16, 4.17, 4.18, 4.19, 4.20, 4.21 e 4.22.

CHAPTER 4. RESULTS AND DISCUSSION 31

FIGURE 4.16 – Checking State Machine steps 1 to 4.

FIGURE 4.17 – Checking State Machine steps 5 to 9.

CHAPTER 4. RESULTS AND DISCUSSION 32

FIGURE 4.18 – Checking State Machine steps 9 to 12.

FIGURE 4.19 – Checking State Machine steps 13 to 16.

CHAPTER 4. RESULTS AND DISCUSSION 33

FIGURE 4.20 – Checking State Machine steps 17 to 20.

FIGURE 4.21 – Checking State Machine steps 21 to 24.

CHAPTER 4. RESULTS AND DISCUSSION 34

FIGURE 4.22 – Checking State Machine steps 25 to 28.

Therefore, we can observe the coherence of the state machine simulator that achieves

its goal by traversing the transitions and states correctly, according to the state machine

shown in the figure 4.2. In this case, it is worth mentioning a possible warning in this

state machine, which is the existence of a loop between the Idle and Listen states, as

seen in the figures 4.17, 4.19, 4.21 and 4.22, in which the Idle and Listen state switches

continuously.

5 Conclusions

The development of this work enabled the construction of a tool that extends the

Capella software and allows the execution of statecharts through a state machine logic.

Therefore, this tool facilitates the development of projects using a model based method-

ology since the state machine simulations can be performed automatically and reviewed

by their authors.

Furthermore, to develop the State Machine Simulator it was necessary to develop

a software architecture whose objective was to manage the interaction logics with the

Capella software, manage the state steps and enable the coupling of different external state

machine simulators to increase the system flexibility. On the other hand, to maintain the

quality of the software, a unit testing infrastructure was created to guarantee its correct

functioning.

In addition, it is worth mentioning that the main value generated by this work is

its ability to abstract the interface logics with the simulator modules and with Capella

software, encapsulating the complex logics that involve each of these modules in the

construction of steps and in their management through an intuitive interface. This was

possible thanks to the study of software engineering techniques that are based on principles

of creating understandable, flexible and maintainable software.

Therefore, the present work is the basis for the development of more elaborate state

machine simulation methods, since it abstracts all the state management logic through an

intuitive interface. Furthermore, the system allows flexibility in the integration of state

simulator modules, since it uses the design pattern factory, making possible the integration

not only with the Sismic library, but also with other simulators such as MATLAB’s

Simulink. On the other hand, as observed in the results section, a warning system of

possible points of attention can be developed to help the user to find possible problems

in his state machine.

Bibliography

ECLIPSE. ADOPTERS. 2022. Available from Internet:
https://www.eclipse.org/capella/adopters.html. Accessed on: 05 jun. 2022.

EMBEDDED. A crash course in UML state machines: Part 1. 2009. Available from
Internet: https://www.embedded.com/a-crash-course-in-uml-state-machines-part-1/.
Accessed on: 05 jun. 2022.

HART, L. E. Introduction to model-based system engineering (mbse) and sysml. In:
LOCKHEED MARTIN CORPORATION, 1., 2015, Delaware Valley. INCOSE, 2015.
Available from Internet: https://www.incose.org/docs/default-source/delaware-valley-
/mbse-overview-incose-30-july-2015.pdf. Accessed on: 07 jun. 2022.

INNOSLATE. How to Perform a Model-Based Review (MBR). 2017. Available from
Internet: https://www.innoslate.com/resource/model-based-review-whitepaper/.
Accessed on: 05 jun. 2022.

ITEMIS. How to Perform a Model-Based Review (MBR). 2022. Available from
Internet: https://www.itemis.com/en/yakindu/state-machine/documentation/user-
guide/overview what are state machines. Accessed on: 05 jun. 2022.

LABS4CAPELLA. Python4Capella. 2022. Available from Internet:
https://github.com/labs4capella/python4capella. Accessed on: 07 jun. 2022.

SHEVCHENKO, N. An introduction to model-based systems engineering (mbse). p. 1,
dez. 2020. Available from Internet:
https://insights.sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/.
Accessed on: 05 jun. 2022.

SPARX SYTEMS. SysML StateMachine Diagram. 2022. Available from Internet:
https://sparxsystems.com/enterprise architect user guide/15.2/model domains-
/sysml statemachine diagram.html. Accessed on: 05 jun. 2022.

SYSML. SysML Open Source Project: What is sysml? who created sysml? 2021.
Available from Internet: https://sysml.org/. Accessed on: 05 jun. 2022.

WITMAN, E. What is Python? The popular, scalable programming language,
explained. [S.l.], 2021. Available from Internet:
https://www.businessinsider.com/what-is-python. Accessed on: 05 jun. 2022.

WITMAN, E. What is Python? The popular, scalable programming language,
explained. [S.l.], 2021. Accessed on: 05 jun. 2022.

Appendix A - Simulator Code

A.1 Main

name: Simulator

script-type: Python

description: Simulator

popup: enableFor(org.polarsys.capella.core.data.capellacore.CapellaElement)

import sys

import subprocess

def version():

subprocess.check_call([sys.executable, "--version"])

def install(package):

subprocess.check_call([sys.executable, "-m", "pip", "install", package])

version()

install("pyyaml")

install("pysimplegui")

include('workspace://Python4Capella/sample_scripts/simulator/simulator.py')

include needed for the Capella modeller API

include('workspace://Python4Capella/simplified_api/capella.py')

Retrieve the Element from the current selection and its aird model path

selected_elem = CapellaElement(CapellaPlatform.getFirstSelectedElement())

aird_path = '/' + CapellaPlatform.getModelPath(selected_elem)

APPENDIX A. SIMULATOR CODE 38

model = CapellaModel()

model.open(aird_path)

simulator = Simulator(model, config={

'model_path': 'default',
'state_type': 'sismic',
'parser_type': 'sismic'

})

simulator.run()

A.2 Simulator

import sys

if "pytest" in sys.modules:

from simulator.core.capella_api import *

from simulator.core.state_machine import *

else:

CapellaModelAPI

include('workspace://Python4Capella/sample_scripts' \

'/simulator/core/capella_api.py')

include('workspace://Python4Capella/sample_scripts' \

'/simulator/core/state_machine.py') # SM

class Simulator:

"""

Essa classe interage em alto nı́vel com o capella e a SM

"""

def __init__(self, model, config):

Carrega configuraç~oes

self.states = None

self.config = self._parse_config(config=config)

APPENDIX A. SIMULATOR CODE 39

Inicializa o capella

self.capella = CapellaModelAPI(model=model)

Inicializa capella e máquina de estados

self.state_machine = self._load_state_machine()

def run(self):

Constrói a interface de comando

self._build_command_interface()

Escuta comandos enviados

while True:

self._command_handler()

if self.states == None:

print("Simulation finalized!")

return

def _build_command_interface(self):

sm_buttons = [state['name'] for state in self.state_machine.states]

self.capella.build_command_interface(sm_buttons)

def _command_handler(self):

"""

Escuta e executa comandos.

"""

command = self.capella.listen() # be awaiting for a new command

if command:

self._command_to_state(command)

self._render_states()

def _command_to_state(self, command):

self.states = self._map_commands(command)()

def _render_states(self):

if self.states:

self.capella.render_states(states=self.states)

def _map_commands(self, command):

APPENDIX A. SIMULATOR CODE 40

Mapeia strings a comandos

commands = {

'next_step': self.state_machine.next_step,

'previous_step': self.state_machine.previous_step,

'finalize': self.state_machine.finalize,

'automatic': self.state_machine.automatic

}

return commands[command]

def _get_session(self):

return self.capella.read_session()

def _load_state_machine(self):

Carrega a state machine

session = self._get_session()

state_type = self.config['state_type']
parser_type = self.config['parser_type']

return SM(

session=session,

state_type=state_type,

parser_type=parser_type

)

@staticmethod

def _parse_config(config):

Cria configuraç~oes válidas

parsed_config = {

'model_path': 'default',
'state_type': 'sismic',
'parser_type': 'sismic'

}

for key, value in config.items():

parsed_config[key] = value if key in parsed_config else None

return parsed_config

APPENDIX A. SIMULATOR CODE 41

A.3 CapellaModelAPI

import re

import io

import PySimpleGUI as sg

from PIL import Image, ImageTk

from plantweb.render import render

class CommandInterface:

def __init__(self, buttons):

layout = [

[sg.Text("State Machine Simulator")],

[sg.Image(key='-IMAGE-' + button) for button in buttons],

[sg.Button(button) for button in buttons],

[sg.Button("NEXT"), sg.Button("PREVIOUS"), sg.Button("FINALIZE")],

]

self.window = sg.Window("Simulator", layout, location=(50, 50))

class CapellaModelAPI:

def __init__(self, model):

self.model = model

self.command_interface = None

self.images = {}

self.buttons = []

self.button = None

def build_command_interface(self, buttons):

"""

Constrói no capella uma interface de comando

para que o usuário gerencie os steps da simulaç~ao.

Obs: enquanto ela n~ao for construı́da, executaremos

cada step da simulaç~ao de 1 em 1 segundo.

"""

self.buttons = buttons

APPENDIX A. SIMULATOR CODE 42

if len(buttons) > 0:

self.button = buttons[0]

self.command_interface = CommandInterface(buttons)

def listen(self):

"""

Fica escutando caso ocorra uma

interaç~ao entre o usuário e a interface de comando.

Se ocorrer, exibe o step requisitado pelo usuário.

"""

if self.command_interface:

event, _ = self.command_interface.window.read()

if event in self.buttons:

self.button = event

for key in self.buttons:

self.command_interface.window['-IMAGE-' +

key].update(visible=key == self.button)

return None

if event == "NEXT":

return 'next_step'

if event == "PREVIOUS":

return 'previous_step'

if event == sg.WIN_CLOSED or event == "FINALIZE":

return 'finalize'

return 'finalize'

def render_states(self, states=None):

TODO: render state in capella

for state in states:

step = state['step']
name = state['name']
plantuml = state['plantuml']

APPENDIX A. SIMULATOR CODE 43

print("-->> MicroStep", name)

print('event:', step.event)

print('transition:', step.transition)

print('entered_states:', step.entered_states)

print('exited_states:', step.exited_states)

print('sent_events:', step.sent_events)

for entered in step.entered_states:

tmp_plantuml = self._change_plantuml_color(plantuml, \

entered, "#FFEE75")

for exited in step.exited_states:

tmp_plantuml = self._change_plantuml_color(tmp_plantuml, \

exited, "#84B1E4")

print('plantuml', tmp_plantuml)

outfile = render(

tmp_plantuml,

engine='plantuml',
format='png',
cacheopts={

'use_cache': False

}

)

im = Image.open(io.BytesIO(outfile[0]))

im.thumbnail((1024, 728), Image.Resampling.LANCZOS)

self.images[name] = ImageTk.PhotoImage(image=im)

for key in self.images:

self.command_interface.window['-IMAGE-' + key].update(

data=self.images[key], visible=key == self.button)

def read_session(self):

Read capella session

return self.model.get_system_engineering()

APPENDIX A. SIMULATOR CODE 44

def _change_plantuml_color(self, plantuml, state, color):

pattern = r'"{state}"(.*){{'.format(state=state)

for m in re.finditer(pattern, plantuml):

end = m.end() - 1

tmp_plantuml = plantuml[:end] + color + " " + plantuml[end:]

return tmp_plantuml

A.4 State Machine Model

import sys

if "pytest" in sys.modules:

from simulator.parsers.factory_parser import *

from simulator.sms.factory_sm import *

else:

ParserFactory

include('workspace://Python4Capella/sample_scripts' \

'/simulator/parsers/factory_parser.py')
SMFactory

include('workspace://Python4Capella/sample_scripts' \

'/simulator/sms/factory_sm.py')

class StateMachineModel:

"""

Construç~ao de um modelo de máquina de estados

"""

def __init__(self, session, state_type, parser_type):

Inicializa a máquina de estados, parser e sess~ao

self.sm = SMFactory(type=state_type)

self.parser = ParserFactory(type=parser_type)

self.sessions = self.parser.sessions(session=session)

def build_steps(self):

Chama método de construç~ao de estados

APPENDIX A. SIMULATOR CODE 45

steps_sms = [self.sm.build_steps(session=s) for s in self.sessions]

Traduz os estados para a linguagem do capella

return [{

'name': steps['name'],
'steps': [self.parser.step(step) for step in steps['steps']],
'plantuml': steps['plantuml']

} for steps in steps_sms]

class SM:

"""

Abstraç~ao da lógica de máquinas de estado.

"""

def __init__(self, session=None, state_type=None, parser_type=None):

Inicializa os estados, o step e o modelo

self.step = -1

self.model = StateMachineModel(

session=session,

state_type=state_type,

parser_type=parser_type

)

self.states = self.model.build_steps()

def next_step(self):

Vai para o próximo estado do modelo, se houver

self.step = self.step + 1

return [self.get_step(steps) for steps in self.states]

def get_step(self, steps):

stepslen = len(steps['steps'])
if stepslen <= self.step and stepslen > 0:

self.step = stepslen - 1

return {

APPENDIX A. SIMULATOR CODE 46

'step': steps['steps'][self.step],
'name': steps['name'],
'plantuml': steps['plantuml']

}

def previous_step(self):

Vai para o próximo estado do modelo, se houver

if self.states == None:

self.start()

if self.step < 1:

self.step = 0

else:

self.step = self.step - 1

return [self.get_step(steps) for steps in self.states]

def automatic(self):

if self.states == None:

return self.start()

return self.next_step()

def finalize(self):

return None

A.5 Abstract Factory

from abc import ABC

class AbstractParser(ABC):

"""

Abstraç~ao de um parser

"""

def session(self):

abstract

pass

APPENDIX A. SIMULATOR CODE 47

def state(self):

abstract

pass

A.6 Parser Factory

import sys

from typing_extensions import Self

if "pytest" in sys.modules:

from simulator.parsers.sismic_parser import *

else:

SismicParser

include('workspace://Python4Capella/sample_scripts' \

'/simulator/parsers/sismic_parser.py')

class ParserFactory:

"""

Fábrica de Parser

"""

def __new__(cls, type) -> Self:

Fabrica o modelo solicitado

products = {

'sismic': SismicParser

}

return products[type]()

A.7 Sismic Parser

import sys

import yaml

from collections import defaultdict

APPENDIX A. SIMULATOR CODE 48

from sismic.io import import_from_yaml

if "pytest" in sys.modules:

from simulator.parsers.abs_parser import *

else:

include('workspace://Python4Capella/sample_scripts' \

'/simulator/parsers/abs_parser.py')

class SismicParser(AbstractParser):

"""

Traduz sess~oes do capella para o modelo

Traduz estados do modelo para o capella

"""

def __init__(self):

self.sismic_to_capella = defaultdict(lambda: None)

def _add_name(self, state):

return {

'name': state.get_name()

}

def _method_by_name(self, method, name: str):

return getattr(method, name)

def _build_state(self, owned_region):

states = []

Estado ou Modo

for owned_state in owned_region.get_owned_states():

owned_state_obj = {

'incoming': [],

'outgoing': [],

'realized_states': [],

'realizing_states': [],

}

for key in owned_state_obj:

method_to_call = self._method_by_name(

APPENDIX A. SIMULATOR CODE 49

owned_state, 'get_' + key)

for element in method_to_call():

owned_state_obj[key].append(element)

if getattr(owned_state, "get_owned_regions", None):

owned_state_obj['regions'] = \

self._build_regions(owned_state)

owned_state_obj['name'] = owned_state.get_name()

states.append(owned_state_obj)

Mapeio o nome do estado para o elemento do capella

e suas transiçoes. Para acessar depois, se necessario.

self.sismic_to_capella[owned_state_obj['name']] = {

'state': owned_state

}

return states

def _build_regions(self, state_machine):

regions = []

Regi~ao da máquina

for owned_region in state_machine.get_owned_regions():

owned_region_obj = self._add_name(owned_region)

states = self._build_state(owned_region)

if states != []:

owned_region_obj['states'] = states

regions.append(owned_region_obj)

return regions

def _append_state_machines(self, state_machines, capella_state_machines):

Máquina de Estado

for state_machine in capella_state_machines:

state_machine_obj = self._add_name(state_machine)

regions = self._build_regions(state_machine)

APPENDIX A. SIMULATOR CODE 50

state_machine_obj['regions'] = regions

state_machines.append(state_machine_obj)

return state_machines

def _read_capella_state_machines(self, session):

logical_architecture = session.get_logical_architecture()

logical_system = logical_architecture.get_logical_system()

Inside LC 1

owned_logical_components = \

logical_system.get_owned_logical_components()

state_machines = []

state_machines = self._append_state_machines(

state_machines, logical_system.get_owned_state_machines())

LC 1 Component

for owned_logical_component in owned_logical_components:

state_machines = self._append_state_machines(

state_machines,

owned_logical_component.get_owned_state_machines())

return state_machines

def _dict_to_yaml_str(self, dictonary):

yaml.dump(dictonary, sys.stdout)

return yaml.dump(dictonary)

def _parse_standard_dict(self, standard_dict):

statechart_arr = []

if isinstance(standard_dict, list):

return standard_dict

for key, value in standard_dict.items():

statechart_dict = {}

if key[1]:

APPENDIX A. SIMULATOR CODE 51

statechart_dict[key[0]] = key[1]

statechart_dict.update(value)

for key_tmp in ['states', 'transitions', 'parallel states']:
if key_tmp in value:

statechart_dict[key_tmp] = self._parse_standard_dict(

value[key_tmp])

statechart_arr.append(statechart_dict)

return statechart_arr

def _handle_empty_states(self, states, handle_states):

Handle missing states creating a empty state

for transition in handle_states:

if ('name', transition) not in states:

states[('name', transition)] = {}

return states

def _region_to_sismic(self, regions):

parallel_states = {}

for region in regions:

initial = None

states = {}

parallels = []

states_transitions = []

for state in region['states']:
if initial == None or 'init' in state['name'].lower():

initial = state['name']

transitions = {}

has_parallel = len(state['outgoing']) > 1

for transition in state['outgoing']:
targets = transition.get_target()

for target in targets:

target_name = target if target == None \

APPENDIX A. SIMULATOR CODE 52

else target.get_name()

transitions[('target', target_name)] = {}

states_transitions.append(target_name)

parallel = {

'incoming': state['name'], 'outgoing': target_name}

if has_parallel:

Solve NonDeterministicError

parallels.append(parallel)

if transitions != {} or 'regions' in state:

states[('name', state['name'])] = {}

if transitions != {}:

states[('name', state['name'])]['transitions'] = transitions

if 'regions' in state and state['regions'] != []:

parallel_states_2 = self._region_to_sismic(

regions=state['regions'])
states[('name', state['name'])]['parallel states'] = \

self._parse_standard_dict(parallel_states_2)

states = self._handle_empty_states(states, states_transitions)

parallel_states[('name', region['name'])] = {

'states': states

}

parallel_states[('name', region['name'])]['initial'] = initial

return parallel_states

def _capella_to_sismic_state_machines(self, state_machines):

statecharts = []

for state_machine in state_machines:

parallel_states = \

self._region_to_sismic(regions=state_machine['regions'])

APPENDIX A. SIMULATOR CODE 53

statecharts.append({

'name': state_machine['name'],
'root state': {

'name': 'root',
'parallel states': \

self._parse_standard_dict(parallel_states)

}

})

return [{

'statechart': statechart

} for statechart in statecharts]

def step(self, step=None):

return step

def sessions(self, session=None):

capella_sms = self._read_capella_state_machines(session)

sismic_sms = self._capella_to_sismic_state_machines(capella_sms)

simic_yaml_strs = [self._dict_to_yaml_str(

sismic_sm) for sismic_sm in sismic_sms]

TODO: criar um logger e logar o simic_yaml_str

return [import_from_yaml(simic_yaml_str) for simic_yaml_str \

in simic_yaml_strs]

A.8 Abstract SM

from abc import ABC

class AbstractSM(ABC):

"""

Abstraç~ao de uma máquina de estados

"""

APPENDIX A. SIMULATOR CODE 54

def build_steps(self):

abstract

pass

A.9 SM Factory

import sys

from typing_extensions import Self

if "pytest" in sys.modules:

from simulator.sms.sismic_sm import *

else:

SismicParser

include('workspace://Python4Capella/sample_scripts' \

'/simulator/sms/sismic_sm.py')

class SMFactory:

"""

Fábrica de Máquina de Estados

"""

def __new__(cls, type) -> Self:

Fabrica o modelo solicitado

products = {

'sismic': SismicSM

}

return products[type]()

A.10 Sismic SM

import sys

from sismic.interpreter import Interpreter

from sismic.io import export_to_plantuml

if "pytest" in sys.modules:

APPENDIX A. SIMULATOR CODE 55

from simulator.sms.abs_sm import *

else:

include('workspace://Python4Capella/sample_scripts' \

'/simulator/sms/abs_sm.py')

MAX_STEPS = 20

class SismicSM(AbstractSM):

def build_steps(self, session=None):

steps = []

interpreter = Interpreter(session)

plantuml = export_to_plantuml(session)

for step in interpreter.execute(max_steps=MAX_STEPS):

for micro_step in step.steps:

steps.append(micro_step)

return {

'steps': steps,

'name': interpreter.statechart.name,

'plantuml': plantuml

}

A.11 Test Simulator

import os

import pytest

from simulator.simulator import Simulator

from simulator.tests.mocks.mock_cappela import MockCapellaModel

from pytest_unordered import unordered

from sismic.io import import_from_yaml

APPENDIX A. SIMULATOR CODE 56

@pytest.fixture

def simulator():

model = MockCapellaModel()

return Simulator(model, config={

'model_path': 'default',
'state_type': 'sismic',
'parser_type': 'sismic'

})

def test_simulator_config(simulator):

assert simulator.config == {'model_path': 'default',
'state_type': 'sismic', 'parser_type': 'sismic'}

def test_sessions(simulator):

mock_statechart = import_from_yaml(filepath=os.path.dirname(__file__) +

'/mocks/mock.yaml')

assert len(simulator.state_machine.model.sessions) == 6

for statechart in simulator.state_machine.model.sessions:

assert statechart.root == mock_statechart.root

assert statechart.states == mock_statechart.states

assert statechart.transitions == unordered(mock_statechart.transitions)

FOLHA DE REGISTRO DO DOCUMENTO

1. CLASSIFICAÇÃO/TIPO 2. DATA 3. DOCUMENTO Nº 4. Nº DE PÁGINAS

TC 17 de novembro de 2022 DCTA/ITA/TC 054/2022 56

5. TÍTULO E SUBTÍTULO:

Adding Simulation Capability to Systemic Models

6. AUTOR(ES):

Rubens Miguel Gomes Aguiar

7. INSTITUIÇÃO(ÕES)/ÓRGÃO(S) INTERNO(S)/DIVISÃO(ÕES):

Instituto Tecnológico de Aeronáutica – ITA

8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR:

Systemic Engineering; Software Engineering; Capella.

9. PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO:

Engenharia de sistemas; Simulação; Engenharia de software; Computação; Engenharia aeroespacial.

10. APRESENTAÇÃO: (X) Nacional () Internacional

ITA, São José dos Campos. Curso de Graduação em Engenharia Aeroespacial. Orientador: Prof. Dr. Christo-
pher Shneider Cerqueira. Publicado em 2022.
11. RESUMO:

In systems engineering, the model-based methodology allows the representation of models at a high level. In this
context, models are represented through state machines in order to integrate the different parts of the system.
Therefore, the need arises to perform the simulation of state machines in an automated way, to verify the integrity
of the created models. Thus, a Python extension was developed for one of the main systems engineering modeling
tools, known as Capella, that allows the simulation of statecharts. Therefore, the developed tool was applied in
two state machines to exemplify its practical behavior.

12. GRAU DE SIGILO:

(X) OSTENSIVO () RESERVADO () SECRETO

	Cover
	Face Page
	Cataloging-in-Publication
	Thesis Committee Composition:
	Dedication
	Acknowledgments
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Hypothesis
	1.3 Objective

	2 Bibliographic Review
	2.1 Model-Based Systems Engineering (MBSE)
	2.2 Statecharts
	2.3 Python
	2.4 Capella

	3 Materials and Methods
	3.1 Activities Plan
	3.2 Extension development for the Capella tool

	4 Results and Discussion
	4.1 Simulator Operation
	4.2 Configuration
	4.3 Applications
	4.3.1 IFE Operation Modes State Machine
	4.3.2 Checking State Machine

	5 Conclusions
	Bibliography
	A Simulator Code
	A.1 Main
	A.2 Simulator
	A.3 CapellaModelAPI
	A.4 State Machine Model
	A.5 Abstract Factory
	A.6 Parser Factory
	A.7 Sismic Parser
	A.8 Abstract SM
	A.9 SM Factory
	A.10 Sismic SM
	A.11 Test Simulator

	Folha de Registro do Documento

