
INSTITUTO TECNOLÓGICO DE AERONÁUTICA

Leonardo Mouta Pereira Pinheiro

MANIPULATING A CABLE-SUSPENDED OBJECT

WITH MULTIPLE UAVS AND ENVIRONMENT

CONTACTS IN 2D

Final Paper

2022

Course of Aerospace Engineering

CDU 629.78

Leonardo Mouta Pereira Pinheiro

MANIPULATING A CABLE-SUSPENDED OBJECT

WITH MULTIPLE UAVS AND ENVIRONMENT

CONTACTS IN 2D

Advisor

Prof. Dr. Christopher Shneider Cerqueira (ITA)

AEROSPACE ENGINEERING

São José dos Campos
instituto tecnológico de aeronáutica

2022

Cataloging-in Publication Data
Documentation and Information Division

Mouta Pereira Pinheiro, Leonardo
Manipulating a cable-suspended object with multiple UAVs and environment contacts in 2D /
Leonardo Mouta Pereira Pinheiro.
São José dos Campos, 2022.
65f.

Final paper (Undergraduation study) – Course of Aerospace Engineering– Instituto Tecnológico
de Aeronáutica, 2022. Advisor: Prof. Dr. Christopher Shneider Cerqueira.

1. UAV. 2. Manipulation. 3. Swarm. I. Instituto Tecnológico de Aeronáutica. II. Title.

BIBLIOGRAPHIC REFERENCE

MOUTA PEREIRA PINHEIRO, Leonardo. Manipulating a cable-suspended object
with multiple UAVs and environment contacts in 2D. 2022. 65f. Final paper
(Undergraduation study) – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSION OF RIGHTS

AUTHOR’S NAME: Leonardo Mouta Pereira Pinheiro
PUBLICATION TITLE: Manipulating a cable-suspended object with multiple UAVs and
environment contacts in 2D.
PUBLICATION KIND/YEAR: Final paper (Undergraduation study) / 2022

It is granted to Instituto Tecnológico de Aeronáutica permission to reproduce copies of
this final paper and to only loan or to sell copies for academic and scientific purposes.
The author reserves other publication rights and no part of this final paper can be
reproduced without the authorization of the author.

Leonardo Mouta Pereira Pinheiro
Rua H8A, Ap. 118
12.228-460 – São José dos Campos–SP

MANIPULATING A CABLE-SUSPENDED OBJECT
WITH MULTIPLE UAVS AND ENVIRONMENT

CONTACTS IN 2D

This publication was accepted like Final Work of Undergraduation Study

Leonardo Mouta Pereira Pinheiro

Author

Christopher Shneider Cerqueira (ITA)

Advisor

Profa. Dra. Cristiane Aparecida Martins
Course Coordinator of Aerospace Engineering

São José dos Campos: November 23, 2022.

To my family.

Acknowledgments

First and foremost, I’d like to thank God for all the opportunities given to me so far.

I’d also like to thank both ITA and ISAE-SUPAERO for the education I have been

given these past years. It has been a fantastic experience to participate in your double

degree program.

LAAS is also to thank for the amazing internship that allowed me to pursue this

project., where I was wonderfully advised by Dr. Simon Lacroix and Dr. Hai-Nguyen

(Hann) Nguyen. Also co-advising this work was Dr. Christopher Shneider Cerqueira from

ITA-Brazil, who has repeatedly offered me valuable guidance during the execution of this

thesis. I’d also like to thank Dr. Dario Sanalitro, Dr. Martin Jacquet and PhD student

Gianluca Corsini, who were very friendly desk neighbors and who greatly contributed in

providing ideas for this work, and my co-interns Colomban Le Falher and Arthur Lotz,

who were great to work with.

Finally, thanks is also due to my family, and also to some special colleagues: to

my fiancée Ana Santos, without whom I’d probably have flunked some courses; to the

Brazilian community from ITA’s class of 2021’ that held together throughout our double

degree at ISAE-SUPAERO - Lucas, Arthur and Ana Flávia; and to my roommates (and

aggregates) from H8A 118 - Sanches, Adrisson, Barion, Belzunces, Germano, Leonardo,

Trópia, Źıngara, Monteiro and Purim.

“Moderation in the defense of the Truth
is a service rendered to the lie.”

— Olavo de Carvalho

Abstract

Considering a fleet of multicopter drones, where each drone is attached via cables to the

same object, the problem of automatically planning the path of these drones so that the

object can be manipulated from an initial pose to a desired pose merits more studies, given

the problem’s wide range of potential applications. This work proposes that this path

planning can be modeled as a contact mode guided, sampling-based planning problem,

where a constrained trajectory is generated using sampling techniques. Initial applications

of this method to 2D scenarios are shown, which illustrate the successes or failures of

the method for each scenario type. Given the analysis of these results, some possible

improvements are then proposed.

Resumo

Considerando uma frota de drones multicópteros, onde cada drone é preso ao mesmo

objeto por meio de cabos, o problema de planejar automaticamente o caminho desses

drones de tal forma que o objeto seja manipulado de uma pose inicial a uma pose desejada

merece ser estudado, dado o seu número de aplicações potenciais. Este trabalho propõe

que tal planejamento de trajetória pode ser modelado como um problema de manipulação

onde uma trajetória restringida por modos de contato é determinada usando métodos de

amostragem. São apresentadas as aplicações iniciais deste método em cenários 2D, que

ilustram os sucessos ou fracassos do método para cada tipo de cenário. Dada a análise

destes resultados, algumas melhorias posśıveis são então propostas.

List of Figures

FIGURE 2.1 – Main applications areas of the LAAS’s research. Source: (LAAS, 2022) 18

FIGURE 2.2 – Organizational chart of the LAAS. Source: (LAAS, 2022) 19

FIGURE 2.3 – Areas and tools of the RIS team. Source (LAAS, 2022) 20

FIGURE 2.4 – Evolution of UAVs. Courtesy of Antonio Franchi @ LAAS 21

FIGURE 2.5 – Decomposition of the UAV manipulation problem 22

FIGURE 2.6 – Sometimes multiple drones have to coordinate their movement and

account for environment interactions in order to successfully manip-

ulate an object. Courtesy of Hann Nguyen @ LAAS 22

FIGURE 2.7 – A drone can make use of the environment to achieve its goal. Cour-

tesy of Hann Nguyen @ LAAS . 23

FIGURE 3.1 – Physical elements used in the manipulation problem. Numbering is

arbitrary for this example . 25

FIGURE 3.2 – Frames of reference involved in the problem 25

FIGURE 3.3 – This object has two attachment points and a single environment

contact point. The environment contact point can be set to “fixed”

or “right-slide” . 35

FIGURE 3.4 – Boundaries of the configuration regions for two different contact modes 35

FIGURE 4.1 – Reduced UML diagram for lie.py module 36

FIGURE 4.2 – Reduced UML diagram for environments.py module 37

FIGURE 4.3 – Schemes of the current supported environments 37

FIGURE 4.4 – Reduced UML diagram for drones.py module 38

FIGURE 4.5 – Reduced UML diagram for objects.py module 38

FIGURE 4.6 – Reduced UML diagram for simulation.py module 39

LIST OF FIGURES x

FIGURE 4.7 – Reduced UML diagram for contraints.py module 40

FIGURE 4.8 – Reduced UML diagram for scenarios.py module 41

FIGURE 4.9 – Scenario: “square on surface” . 42

FIGURE 4.10 –Scenario: “square over hill” . 42

FIGURE 4.11 –Scenario: “square over bump” . 42

FIGURE 4.12 –Scenario: “slide square on rugged surface” 42

FIGURE 4.13 –Scenario: “square with single drone” 43

FIGURE 5.1 – “Square on surface” variant 1 . 48

FIGURE 5.2 – Extended tree - Scenario 1 variant 2 48

FIGURE 5.3 – “Square on surface” variant 2 - alternate version with movement re-

stricted to surface . 49

FIGURE 5.4 – “Square on surface” variant 3 . 49

FIGURE 5.5 – “Square over hill” variant 1 . 50

FIGURE 5.6 – “Square over bump” variant 1 . 51

FIGURE 5.7 – “Slide square on rugged surface” variant 1 51

FIGURE 5.8 – “Slide square on rugged surface” variant 1 - alternate version with

movement restricted to surface . 52

FIGURE 5.9 – Comparison between two different behaviors for the drone-object

system, which alternate among each other during transport 53

FIGURE 5.10 –“Square with single drone’ variant 1 53

FIGURE 5.11 –“Square with single drone’ variant 2 54

FIGURE 5.12 –Extended tree - Scenario 5 variant 1 54

FIGURE 5.13 –“Square with single drone’ variant 4 55

FIGURE 5.14 –Movement in scenario 5 variant 5 56

FIGURE 6.1 – Comparison of fixed distance increment versus moving object until

vo = 0 . 57

FIGURE 6.2 – “Square with single drone’ variant 3 - Alternate version with RRT

extending until vo = 0 . 58

FIGURE 6.3 – Architecture of the PX4 flight control stack. Source: (JOSEPH; CA-

CACE, 2018) . 59

LIST OF FIGURES xi

FIGURE 6.4 – Relation between PX4, Gazebo and ROS 59

FIGURE 6.5 – Gazebo simulation for scenario 5 (single drone) 60

FIGURE 6.6 – Two different object configurations that can arise from the same

drone configuration . 61

FIGURE 6.7 – Drones alternating contact mode between one step and the other . . 61

List of Tables

TABLE 5.1 – Average values for scenario 1 - variant 1 48

TABLE 5.2 – Average values for scenario 1 - variant 2 49

TABLE 5.3 – Average values for scenario 1 - variant 3 49

TABLE 5.4 – Average values for scenario 2 - variant 1 50

TABLE 5.5 – Average values for scenario 3 - variant 1 51

TABLE 5.6 – Average values for scenario 4 - variant 1 52

TABLE 5.7 – Average values for scenario 5 - variant 1 53

TABLE 5.8 – Average values for scenario 5 - variant 2 54

TABLE 5.9 – Average values for scenario 5 - variant 3 54

TABLE 5.10 – Average values for scenario 5 - variant 4 55

TABLE 5.11 – Average values for scenario 5 - variant 5 56

Contents

1 Introduction . 16

1.1 Motivation . 16

1.2 Hypothesis . 16

1.3 Objective . 17

1.4 Organization of this Work . 17

2 Context . 18

2.1 LAAS-CNRS: A Research Lab . 18

2.2 Team Robotics and Interactions (RIS) 19

2.3 UAV Research Internship at RIS . 20

3 Formulation of the UAV-Object Manipulation Problem 24

3.1 Formal Description of the Problem . 24

3.2 Problem Tools . 27

3.2.1 SE(2) Algebra . 27

3.2.2 Grasp Map: Relating Contact Frames To Body Frame 29

3.2.3 Drone Limitations and Description 30

3.2.4 Constrained motion . 31

4 Path Planning Algorithm . 36

4.1 Classes and Program Diagram . 36

4.1.1 Algebra Module . 36

4.1.2 Environment . 36

4.1.3 Drones . 38

CONTENTS xiv

4.1.4 Manipulable Object . 38

4.1.5 Simulator . 39

4.1.6 Constraint Calculator . 39

4.1.7 Scenario . 40

4.2 RRT Path Planning Algorithm . 43

5 Results . 47

5.1 “Square on surface” Scenario . 47

5.1.1 Variant 1 . 47

5.1.2 Variant 2 . 48

5.1.3 Variant 3 . 49

5.2 “Square over hill” Scenario . 50

5.2.1 Variant 1 . 50

5.3 “Square over bump” Scenario . 50

5.3.1 Variant 1 . 50

5.4 “Slide square on rugged surface” Scenario 51

5.4.1 Variant 1 . 51

5.5 “Square with single drone” Scenario . 52

5.5.1 Variant 1 . 52

5.5.2 Variant 2 . 53

5.5.3 Variant 3 . 54

5.5.4 Variant 4 . 55

5.5.5 Variant 5 . 55

6 Possible Improvements and Next Steps 57

6.1 Extending RRT to the maximum . 57

6.2 Preliminary simulations in the ROS/Gazebo environment 58

6.3 Weighted planning . 60

6.4 Smooth drone movement . 60

6.5 Quasi-dynamic formulation . 61

CONTENTS xv

7 Conclusion . 63

Bibliography . 64

1 Introduction

1.1 Motivation

The objective of this report is to describe a senior research project, as required by

ITA for graduating. This research was performed in the context of a research internship,

which took place between April 2022 and September 2022 at the Laboratory of Analysis

and Architecture of Systems (LAAS), in Toulouse/France.

The mission of this internship was to study the manipulation of cable-suspended ob-

jects, using both a fleet of unmanned aerial vehicles (UAV) and interactions with the

environments, in order to arrive at the desired poses. This approach relies on methods

developed previously for finger manipulators. After an initial formulation of the math-

ematics of the problem and of its solution algorithm, this solution was then studied in

computer simulated environments so that its quality could be assessed.

As for the report’s structure, I will first describe the role and the history of LAAS,

followed by the specific role of the team of which I was part. Then a description of the

mathematical and computational formulations of the problem will be presented, followed

by a chapter discussing the results obtained.

1.2 Hypothesis

The objective of this work is to propose a solution for the problem of how to plan the

paths of multiple drones, each one of those attached via cables to the same solid object,

in order to achieve full pose manipulation of said object, from an initial pose to a final

pose. This work proposes to model the problem of manipulating a cable-suspended object

with multiple UAVs as a multi-modal, constrained planning problem which will then be

solved using a CBiRRT-like algorithm.

CHAPTER 1. INTRODUCTION 17

1.3 Objective

To prove this hypothesis, the following steps will be taken:

1. The problem will be formulated in its mathematical terms for 2D scenarios.

2. The mathematical modeling will be tested in computer simulation, which will serve

to validate the method used.

1.4 Organization of this Work

Concerning the structure of this work, chapter 2 describes the role and the history

of LAAS, including the reasoning behind pursuing swarm-based manipulation. Chapters

3 and 4 deal respectively with the mathematical and computational formulations of the

problem. These are followed by chapter 5, which discusses the results obtained. Based

on the previous analysis of the results, chapter 6 suggests possible improvements to the

presented model. Finally, chapter 7 offers a short conclusion for this work.

2 Context

2.1 LAAS-CNRS: A Research Lab

The Laboratory of Analysis and Architecture of Systems (LAAS) is a public research

lab which was founded in 1968 as a part of the National Center for Scientific Research

(CNRS). In its inception, founder Jean Lagasse dedicated the lab to the study of au-

tomation, back then a newborn field, but this notion was surpassed when the growing

complexity of tasks led to the rise of the concept of “systems”. It was soon realized that

automation was but a part of a much larger context. Nowadays, the lab’s mission consists

of modeling, designing and controlling various sorts of complex systems, from microelec-

tronics to human-robot interactions. More precisely, the research developed at LAAS is

split into six main areas: networks/IT, robotics, decision and optimization, microwaves,

energy management, and “MicroNanoBio” Technologies, with each area being comprised

of several different teams. All the research done at LAAS is pointed towards five goal

lines, which are shown in Fig. 2.1 (LAAS, 2022).

FIGURE 2.1 – Main applications areas of the LAAS’s research. Source: (LAAS, 2022)

As for the structure of the teams mentioned, the organizational chart of the lab can

be seen in Fig. 2.2. The activities of this internship took place in the midst of the RIS

team, which is a part of the robotics research area.

CHAPTER 2. CONTEXT 19

FIGURE 2.2 – Organizational chart of the LAAS. Source: (LAAS, 2022)

2.2 Team Robotics and Interactions (RIS)

The acronym RIS stands for Robotics and InteractionS, which summarizes well the

scope of the team: to design autonomous machines that combine and integrate “per-

ception, reasoning, learning, and action/reaction capabilities” (LAAS, 2022). With the

growing complexity of the tasks performed by robots, the need to account for more re-

fined interactions between the platform and its environment makes the work developed

by the RIS team both fundamental and innovative. Moreover, it is not only the environ-

ment that falls under the category of “interactions”: cooperation between robots, human

operators and interfaces with existing systems are all examples of interactions.

The philosophy employed by the RIS team is as follows: first, a set of tools is developed.

These tools include architectures, controls, planners, etc. Then, these tools are used in the

context of three context areas: multi-robot systems, cognitive and interactive robots, and

molecular motion problems (which can be modeled as robotics problems) (LAAS, 2022).

This structure is shown in Fig. 2.3.

CHAPTER 2. CONTEXT 20

FIGURE 2.3 – Areas and tools of the RIS team. Source (LAAS, 2022)

2.3 UAV Research Internship at RIS

Autonomous aerial vehicles have become more and more common in our society, and

the RIS team is working to ensure that UAVs are up to the tasks demanded of them.

Over the course of the years, the paradigm of UAV usage has shifted: initially, UAVs

were employed “in isolation”, meaning they avoided interacting with the environment

and usually worked alone. One example of such mission is aerial filming. However,

current missions can require cooperation, environment interaction, and other complex

tasks. Consider for example a scenario where a fleet of drones is used to do welding. Not

only do the drones have to cooperate among themselves, but a high degree of“environment

reading” is required. This evolution of the usage of UAVs can be summarized in Fig. 2.4

(OLLERO et al., 2021).

CHAPTER 2. CONTEXT 21

FIGURE 2.4 – Evolution of UAVs. Courtesy of Antonio Franchi @ LAAS

Among the new tasks required of UAVs, we can cite the example of object transporta-

tion/manipulation, which has become ever more common with the advent of drone delivery

services. Needless to say, this type of mission spans numerous applications, including plac-

ing objects in places which are dangerous or out of reach for humans, manipulating heavy

objects, dealing with objects which require high precision, etc. For many applications,

however, this type of mission requires more than one drone, be it because of the object’s

weight, size, geometry, etc. Coordinating the movement of all the drones manipulating

the object in order to make it arrive at the desired pose is not a trivial matter, but this

mission can be divided into three main problem subsets, such as shown in Fig. 2.5: a

path planning problem on the drones’ positions, a manipulation problem on the object’s

pose, and a control problem on the system drones-cables-object.

CHAPTER 2. CONTEXT 22

FIGURE 2.5 – Decomposition of the UAV manipulation problem

Several difficulties arise when dealing with these scenarios. First of all, let us consider

the problem of dealing with the control of the drones, which are now subject to varying

loads. This problem has been tackled in the works of (SREENATH et al., 2013), for the case

of a single UAV, and of (SANALITRO et al., 2020), for the case with multiple UAVs. As for

the the problem of generating the drones’ trajectories, it is clear that these trajectories

are not known a priori when considering the initial and goal poses of the object. When

generating the trajectories, part of the difficulty lies in the fact that there are many

discontinuities involved in the drones’/object’s path. In Fig. 2.6, one can see examples

of such discontinuities: when the object touches the surface, when the cable attaching a

drone to the object is relaxed, etc. These discontinuities and environmental interactions

are not necessarily undesirable. As an example, Fig. 2.7 shows a case where a drone

could use the friction between the object and the surface in order to change the object’s

orientation.

FIGURE 2.6 – Sometimes multiple drones have to coordinate their movement and account for environment
interactions in order to successfully manipulate an object. Courtesy of Hann Nguyen @ LAAS

CHAPTER 2. CONTEXT 23

FIGURE 2.7 – A drone can make use of the environment to achieve its goal. Courtesy of Hann Nguyen
@ LAAS

As for the manipulation problem, previous solutions for situations involving disconti-

nuities consisted of proposing several high-level primitives, such as “grasping”, “pushing”,

“pivoting”, etc. The work by (BYRNE et al., 2001), for example, observes 72 manipulation

primitives in gorillas, which means that this method of enumerating and designing mo-

tion primitives might get out of hand fast if one deals with more complex manipulation

problems.

In more recent work by (CHENG et al., 2021b) a different approach has been proposed:

instead of defining motion primitives, it is possible to list different“modes” for the object’s

contact points, with each one of these modes being related to a set of constraints on force

and velocity. These constraints can be than added to a path planning algorithm, such as

the CBiRRT proposed in (BERENSON et al., 2009), in order to generate the trajectories

that must be followed by the drones. What was proposed by LAAS as the objective of

the internship was to adapt these tools to the context of UAVs in order to try and solve

the problems of path planning and object manipulation together. We shall explore the

formalization of this problem in the next chapter.

3 Formulation of the UAV-Object

Manipulation Problem

3.1 Formal Description of the Problem

To begin our description of the problem, it is important to describe the physical

elements involved, which are listed below and illustrated on Fig. 3.1, following the same

rationale of (CHENG et al., 2021b).

• Object O: Rigid polygonal object. We assume the object is homogeneous in density

and that its friction coefficient µobj is the same throughout its surface. This is the

payload that will be manipulated by the drones.

• Environment E : Collection of static, impenetrable polygonal shapes in the move-

ment region. Each shape of the environment can have a different friction coefficient

µenv.

• Drones di: Each drone di is represented as a fully actuated punctual object with

mass mi. We have a total of Nuav drones involved. Also, as a further restriction,

each drone is connected to exactly one point on the object and no point on the

object is connected to more then one drone. The lengths of the cables connecting

each drone to the object are known and the cables are ideal.

• Contact points ci: points where the object is either touching one of the surfaces of

the environment or is attached to one of the cables.

CHAPTER 3. FORMULATION OF THE UAV-OBJECT MANIPULATION
PROBLEM 25

FIGURE 3.1 – Physical elements used in the manipulation problem. Numbering is arbitrary for this
example

The existence of these objects allow us to define the frames of reference which are

relevant to the problem, as shown in Fig. 3.2. The world frame W is an inertial frame

fixed somewhere in the world; the body frame B is fixed at a point on the manipulable

object (not necessarily its center of mass); finally, each contact point has its own contact

frame Ci, which is a right-handed frame of reference where the y direction is defined by

the contact normal that points towards the interior of the object.

FIGURE 3.2 – Frames of reference involved in the problem

With these frames in mind, together with the previous definitions presented, we can

define some key terms that will be used when solving this problem, while also further

formalizing some of the previously shown concepts.These also follow the same rationale

of (CHENG et al., 2021b).

• Object configuration q: An object configuration is the tuple (x, y, θ) that defines

the translation and rotation of frame B w.r.t. the frame W .

CHAPTER 3. FORMULATION OF THE UAV-OBJECT MANIPULATION
PROBLEM 26

• Drone configuration d⃗. Each drone has a position d⃗i =

[
dix

diy

]
w.r.t. frame W 1.

Combining all drone positions, we get the drone configuration d⃗ =


d⃗1

d⃗2

...

d⃗Nuav

. Follow-
ing the nomenclature in (FINK et al., 2011), the problem of finding d⃗(q) is called the

inverse configuration problem, while finding q(d⃗) is called the direct configuration

problem.

• Contact points ci: Each contact point is defined by three attributes: its position,

normal, and type. The position p⃗i =

[
pix

piy

]
and unitary normal n⃗i =

[
nix

niy

]
, ∥n⃗i∥ = 1

are written w.r.t. frame B. It is worth reinforcing the point that the normal points

towards the interior of the object. Property type ∈ {environment, attachment}
defines the nature of the contact point.

• Contact mode mi: each contact point ci is assigned a contact mode mi which will

describe the interaction between the object and the surface/cable at that point. For

contact points of type “environment”, we have mi ∈ {fixed, separate, right-slide,
left-slide}. For contact points of type “attachment”, we have mi ∈ {strained, loose}.
The contact mode will define which constraints are acting on the contact point.

• Contact forces λ⃗i and contact velocities v⃗ci: on the object’s side of the contact

interaction, each contact point is subject to contact force λ⃗i =

[
λix

λiy

]
and contact

velocities v⃗ci =

[
vcix

vciy

]
, both written w.r.t. the contact frame Ci.

Given these definitions, the problem we wish to solve consists of: given an environment

E and object O, an initial object configuration qinit and a goal configuration qgoal, we wish

to find the drones’ configuration path d⃗k, with k representing discrete steps, such that

we have q(d⃗0) = qinit and dist(q(d⃗N), qgoal) < Q for some value N , distance function for

SE(2) dist(q1, q2) and value Q. Moreover, for every 0 ≤ k ≤ N , we must respect the

constraints imposed by the environment/cables and the maximum limits admitted for the

drones.

1I apologize for using di to refer to the drone and d⃗i to refer to the drone’s position. I was running
out of significant letters.

CHAPTER 3. FORMULATION OF THE UAV-OBJECT MANIPULATION
PROBLEM 27

3.2 Problem Tools

In order to develop the problem, we need to use some mathematical tools. These are

mostly described in (MURRAY et al., 2017) and (EADE, 2013), which are the main sources

of this section, unless otherwise stated.

3.2.1 SE(2) Algebra

Given the definition of the object configuration, we can find a one-to-one correspon-

dence between the configuration q and the homogeneous matrix representation gWB of

the transformation from frame B to W if we limit θ ∈ [−π, π), such as in (3.1). This is

not too complicated to visualize: after all, the object’s configuration q is just a shorthand

description of the frame B w.r.t. frame W . Since the configuration notation and the

homogeneous matrix notation are equivalent, with the latter simply being the preferred

form for algebraic multiplication, they will be used interchangeably and both will be re-

ferred to as the object’s pose. Also, the concept of transformation matrix, although used

in (3.1) to express the relation between frames B and W , can be extended to describe the

transformation between any two reference frames.

q = (x, y, θ) ⇐⇒ gWB =

cos θ − sin θ x

sin θ cos θ y

0 0 1

 ∈ SE(2) (3.1)

Considering that we have gWB ∈ SE(2), all the properties of SE(2) algebra apply.

For example, we can define a twist ξ̂ ∈ se(2) such that:

eξ̂ ∈ SE(2)

Twists are of the general form shown in (3.2). One can see that any real multiple of

this general form is also a general twist. Given that definition, we can define operator

“vee” V which yields ξ, the so-called twist coordinates of ξ̂, as shown in (3.3). In an

analogous sense, it is not hard to define the inverse operator “wedge” ,̂ as in (3.4), which

transforms twist coordinates to a twist ∈ se(2).

ξ̂ =

0 −ω vx

ω 0 vY

0 0 0

 (3.2)

CHAPTER 3. FORMULATION OF THE UAV-OBJECT MANIPULATION
PROBLEM 28

ξ̂V =

0 −ω vx

ω 0 vY

0 0 0


V

=⇒ ξ =

vxvy
ω

 (3.3)

ξˆ=

vxvy
ω


ˆ

=⇒ ξ̂ =

0 −ω vx

ω 0 vY

0 0 0

 (3.4)

Using the general form of the twist from (3.2), we can calculate the value of the matrix

exponential in (3.5) (which conversely allows the calculation of a matrix logarithm for

SE(2), such as in (3.6)). These expressions can be computed from the infinite expansion

of the general matrix exponential, but this is left implicit. Also, the value of the expression

for when ω = 0 can be obtained from the limit, resulting in identities.

ξ̂ =

0 −ω vx

ω 0 vY

0 0 0

 =⇒ eξ̂ =

cosω − sinω 1
ω
[vx sinω − vy(1− cosω)]

sinω cosω 1
ω
[vx(1− cosω) + vy sinω]

0 0 1

 (3.5)

eξ̂ =

cos θ − sin θ x

sin θ cos θ y

0 0 1

 =⇒ ξ̂ =

0 −θ θ
2
[x cot θ

2
+ y]

θ 0 θ
2
[−x+ y cot θ

2
]

0 0 0

 (3.6)

The advantage of these definitions is that they allow us to define a body velocity,

which is the linear and angular velocity of the frame B, as measured by an observer at the

frame W , but expressed in terms of the frame B. Mathematically, the body velocity twist

v̂b, which can be easily converted to and from twist coordinates, is defined in (3.7), where

∆t represents a time step and t is a general time parameter2. We can use this velocity to

update the body’s pose, or conversely we can find a velocity given a desired pose and a

time interval, such as in (3.8) (where for convenience we have set (t = 0)). However, for

these equations, it is important to stay in regions where v̂b is piecewise constant.

gWB(t+∆t) = gWB(t)e
v̂b×∆t (3.7)

v̂b =
1

∆t
log[g−1

WB(0)gWB(∆t)] (3.8)

2The reason why we didn’t use the notation v⃗b for the body velocity in twist coordinates was to avoid
notation overload when dealing with the twist ˆ⃗vb

CHAPTER 3. FORMULATION OF THE UAV-OBJECT MANIPULATION
PROBLEM 29

As for the absolute distance between to elements q1, q2 ∈ SE(2), we will use the

same function offered in (CHENG et al., 2021b), expressed in (3.9), where wr is a weight

parameter.

dist(q1, q2) =
√

(x1 − x2)2 + (y1 − y2)2 + wr min(|θ1 − θ2|, 2π − |θ1 − θ2|) (3.9)

The final tool from SE(2) algebra needed to describe our problem is the adjoint matrix

Adpose, expressed in (3.10), which transforms tangent spaces and will be used to build the

so-called “grasp map” on the object.

g =

cos θ − sin θ x

sin θ cos θ y

0 0 1

 =⇒ Adg =

cos θ − sin θ y

sin θ cos θ −x

0 0 1

 (3.10)

3.2.2 Grasp Map: Relating Contact Frames To Body Frame

The grasp map G is a matrix which allows us to convert forces acting on the contact

points, expressed in the contact frames, to a wrench acting on the body frame B and

expressed in that frame. The construction of this matrix follows the same method as in

(MURRAY et al., 2017). First, we can find the transformation matrix gBCi
from contact

frame Ci to body frame B using p⃗i and n⃗i, which are geometrically determined and known

at each instant. This construction is expressed in (3.11).

gBCi
=

 niy nix pix

−nix niy piy

0 0 1

 (3.11)

Knowing the contact frame’s transformation matrix, we can built the contact map Gi

as in (3.12), which relates the force λ⃗i to the wrench F⃗B
i on the frame B via the equation

F⃗B
i = Giλ⃗i. It is worth noting that the matrix at the right is what converts the force on

the contact to the wrench on the contact frame (which is assumed to lack a torque). To

build the complete grasp map, we can consider that the total wrench on the body frame

as a sum F⃗B =
∑

i F⃗
B
i , which results in a grasp map G as defined in (3.13), where n is

the total number of contact points and F⃗B = Gλ⃗, with λ⃗ =


λ⃗1

λ⃗2

...

λ⃗n



CHAPTER 3. FORMULATION OF THE UAV-OBJECT MANIPULATION
PROBLEM 30

Gi = AdT
g−1
BCi

×

1 0

0 1

0 0

 (3.12)

G = [G1, G2, ..., Gn] (3.13)

Conversely, we can also use the grasp map to relate the body velocity in twist coordi-

nates vb to the velocity of the contact points in the contact frame. This is done in (3.14),

where v⃗c =


v⃗c1

v⃗c2

...

v⃗cn

.

v⃗c = GTvb (3.14)

The reason for these conversions is that we will apply the constraints at the contact

points, but we want to see how they relate to the object’s movement.

3.2.3 Drone Limitations and Description

As was said before, each drone di is subject to certain limitations. These are:

• Limitation on the maximum thrust Tmax
i . Considering the thrust T⃗i exerted by the

drone, we must have ∥T⃗i∥ ≤ Tmax
i at all times. This will be important when solving

the problem of finding the forces on the object.

• Limitation on the maximum banking angle ϕmax
i . We can find the banking angle

ϕi of each drone w.r.t. the world vertical by knowing its thrust and applying ϕi =

arccos
(

−g⃗
∥g⃗∥ ·

T⃗i

∥T⃗i∥

)
= arccos

(
Tiy

∥T⃗i∥

)
. At each instant, we must have ϕi ≤ ϕmax

i

If we can determine all the contact forces λ⃗ acting upon the body, we can find the

value of T⃗i for each drone by applying simple transmission of the forces through the cable

together with some frame rotations. Suppose drone j is connected to contact point i on

the body, then the value of T⃗j is given by (3.15), where the R matrices represent rotation

matrices ∈ SO(2). It is worth noting that the value of T⃗j is written w.r.t. the world frame

W .

T⃗j = RWB ×RBCi
× λ⃗i −mj g⃗ (3.15)

CHAPTER 3. FORMULATION OF THE UAV-OBJECT MANIPULATION
PROBLEM 31

Moreover, we can also use the forces to find the position d⃗j of the drone w.r.t. the

world frame. If we consider that the forces can only act in the direction of the cable and

considering that cable of length lij connects contact point i to drone j, the position of

drone j in the world frame is given by (3.16), whic assumes a cable force pulling on the

object. It goes without saying these positions should be valid: for example, the drone

can’t be inside a part of the environment or inside the object.

[
d⃗j

1

]
= gWB ×

[
lij ×RBCi

× λ⃗i

∥λ⃗i∥
+ p⃗i

1

]
(3.16)

3.2.4 Constrained motion

The choice of a contact mode mi on a contact point ci leads to the application of

constraints on the contact force λ⃗i and on the contact velocity v⃗ci. The original formulation

of these constraints comes from (CHENG et al., 2021b), but here they are broken down into

a force problem and a velocity problem, for reasons that will become apparent when we

deal with the path planning algorithm. Moreover, the solution of the force problem allows

us to solve the inverse configuration problem in an efficient manner.

3.2.4.1 Force Problem

For contact points of type environment, the constraints acting on the contact forces

λ⃗i are a function of the contact mode, as shown in (3.17). In these equations, we have

the friction coefficient µ = µobjµenv, where µenv is evaluated on the environment at the

contact point.



λix = 0, λiy = 0, if mi = separate

λiy > 0,−µλiy < λix < µλiy, if mi = fixed

λiy > 0, µλiy + λix = 0, if mi = right-slide

λiy > 0, µλiy − λix = 0, if mi = left-slide

(3.17)

The force constraints for contact points of type attachment can be seen in (3.18) as

functions of the point’s contact mode. The rationale behind these constraints is that the

ideal cable can only pull, but not push, with “pulling” being defined as a force in the

negative y direction of the contact frame Ci. It is important to note that satisfying the

force constraints in the attachment contact points does not necessarily mean that the

limits on the drones’ thrust and banking angle will be respected.

CHAPTER 3. FORMULATION OF THE UAV-OBJECT MANIPULATION
PROBLEM 32λiy < 0, if mi = strained

λix = 0, λiy = 0, if mi = loose
(3.18)

Equations (3.17) and (3.18) specify the constraints on each contact point, but the

constraints on all points must be satisfied at the same time. Therefore, we must consider

not each point individually, but the total set of n contact points c = [c1, c2, ..., cn]
T , contact

modes m = [m1,m2, ...,mn]
T and contact forces λ⃗ = [λ⃗T

1 , λ⃗
T
2 , ..., λ⃗

T
n]

T . Moreover, we will

solve the problem of the forces acting upon the object under a quasi-static assumption,

meaning that at each instant we must satisfy (3.19), where F⃗B
e (q) is the external wrench

applied on the object, which does not from contact forces, as viewed in the body frame

B, for some configuration q of the object. This equation follows naturally from the

construction of the grasp map if we wish that the object be at static equilibrium at all

times. This model, which assumes no accelerations, admits velocities on the object, but

does not deal with the mechanism of how to imprint such velocities.

G(c)λ⃗+ F⃗B
e (q) = 0 (3.19)

Equations (3.17)-(3.19) are either linear equations or linear inequalities acting on the

contact points, meaning it is possible to compile all information about the constraints in a

matrix system of equations and inequalities. Such a system is written in (3.20), where the

matrices involved are a function of the contact modes m (which also defines the contact

types, since there are no two modes alike for different types). Moreover, matrix Aeq,f is

also a function of the contact points c, insofar as the information about the grasp map is

embedded in it. The same logic applies when explaining that beqf is a function of q, since

this matrix contains F⃗B
e (q).

Aeq,f (m, c)λ⃗ = beq,f (m, q)

Aineq,f (m)λ⃗ > bineq,f (m)
(3.20)

The system written in (3.20) is not necessarily determined, which means these equa-

tions might not be enough to calculate the value of λ⃗. However, we can use this system

as constraints to a minimization problem, such as the one shown in (3.21).

min
λ⃗

∥λ⃗∥2

s.t. Aeq,f λ⃗ = beq,f

Aineq,f λ⃗ > bineq,f

(3.21)

CHAPTER 3. FORMULATION OF THE UAV-OBJECT MANIPULATION
PROBLEM 33

By solving (3.21), which is a quadratic minimization problem subject to linear con-

straints, we find the set of contact forces λ⃗ with the smallest module that still respects

the constraints imposed by the contact modes. It is important to remark that these oper-

ations take place before the object’s movement, which means that there is no information

whether it is possible to solve the force problem after applying a velocity to the object.

Finding λ⃗ by means of (3.21) allows us to solve the inverse configuration d⃗(q) by

inputting λ⃗ in (3.16). We can also use the contact forces to calculate the drones’ thrusts

in (3.15). The values of d⃗i and T⃗i can then be used to verify if no violation of the drones’

limits ocurred and if their positions are valid.

3.2.4.2 Velocity Problem

The solution of the velocity problem follows a similar rationale to that of the force

problem and was also first proposed in (CHENG et al., 2021b). We start by defining a

direct body velocity vd between two object configurations qk and qk+1, to be obtained

from (3.8). There are, however, constraints on the contact velocities as a function of

the contact modes. It is worth remarking that these contact modes are the same that

were chosen during the solution of the force problem. For contact points of environment

type, these constraints are listed in (3.22). There are no constraints on the velocity of

attachment contact points.



vciy > 0, if mi = separate

vciy = 0, vcix = 0, if mi = fixed

vciy = 0, vcix > 0, if mi = right-slide

vciy = 0, vcix < 0, if mi = left-slide

(3.22)

All these constraints are, again, linear equations and inequalities, meaning that they

can be compiled into a single system by joining the contact velocities v⃗c = [v⃗Tc1, v⃗
T
c2, ..., v⃗

T
cn]

T .

The system is shown in (3.23).

Aeq,vc(m)v⃗c = beq,vc(m)

Aineq,vc(m)v⃗c > bineq,vc(m)
(3.23)

We are interested in the velocity of the object, not of the contact points. If we consider

vo the object’s body velocity in twist coordinates, we can use the grasp map transformation

in (3.14). This transformation means we can write (3.23) in terms of vo in (3.24), with

Aeq,vo = Aeq,vcG
T and Aineq,vo = Aineq,vcG

T .

CHAPTER 3. FORMULATION OF THE UAV-OBJECT MANIPULATION
PROBLEM 34Aeq,vo(m, c)vo = beq,vo(m)

Aineq,vo(m, c)vo > bineq,vo(m)
(3.24)

We can use the system in (3.24) as a constraint to a minimization problem that allows

us to find vo such that vo is the closest possible velocity to vd that still respects the contact

mode constraints (3.25).

min
vo

∥vo − vd∥2

s.t. Aeq,vovo = beq,vo

Aineq,vovo > bineq,vo

(3.25)

Solving this velocity problem yields vo, which can be used to update the body’s position

to q′k+1 via the implicit relation in (3.26), which is the same as (3.7), but with an explicit

reference to the object’s transformation matrix as a function of its configuration. This

equation uses discrete steps (separated by time ∆t) when implemented in a computer

program.

gWB(q
′
k+1) = gWB(qk)× e∆tv̂o (3.26)

3.2.4.3 Movement Manifolds

Given a set of contact points, the choice of contact modes restricts the movement of the

object to certain configuration spaces, which can intersect among each other. Consider,

for example, the object in Fig. 3.3, where the environment contact point is set either

to right-slide or fixed, and where all restrictions on the drones’ movement have been

ignored. When we evaluate the boundaries of the configuration regions defined by each

environment contact mode, we can see that they intersect, as shown in Fig. 3.4. These

intersections are what makes a solution to the path planning problem possible, for they

enable the transition between two different configuration spaces.

CHAPTER 3. FORMULATION OF THE UAV-OBJECT MANIPULATION
PROBLEM 35

FIGURE 3.3 – This object has two attachment points and a single environment contact point. The
environment contact point can be set to “fixed” or “right-slide”

FIGURE 3.4 – Boundaries of the configuration regions for two different contact modes

4 Path Planning Algorithm

4.1 Classes and Program Diagram

In order to explain the algorithm used, we will describe the classes implemented and

their relations.

4.1.1 Algebra Module

The module lie.py implements the tools discussed in section 3.2.1 (and some tools for

rotation matrices ∈ SO(2)). This module was built around the numpy matrix structure,

which is similar to the traditional array but optimized for 2D arrays. This module is

just a collection of static functions and has no constructors, therefore its “objects” cannot

be used directly as attributes by other modules, but lie.py serves as a background tool

for most of the operations performed. The reduced UML diagram (which includes no

specification on variable typing or dependency relations) for the module can be seen in

Fig. 4.1 and gives an overall sense of the module.

FIGURE 4.1 – Reduced UML diagram for lie.py module

4.1.2 Environment

In order to define the environments, which is done in the module environments.py, we

need two classes: EnvironmentShape and Environment, whose UML diagrams are shown

in Fig. 4.2. Concerning the functionality of this module, each EnvironmentShape object

CHAPTER 4. PATH PLANNING ALGORITHM 37

is composed of a geometry, which is a list of (x, y) points defining vertices for a convex

geometry, a state defining where the shape’s frame of reference is w.r.t. the world, and

a series of properties (friction coefficient µenv, elasticity and color). An Environment

object is composed of a list of EnvironmentShape objects, plus some class constants

to define all environments. Notice that it is possible to create non-convex shapes in

the environment by overlapping convex shapes. The function that should be called is

generate environment, which takes a name as an argument and returns an Environment

object. Four environments are currently supported, which are illustrated in Fig. 4.3:

“plain surface”, “rugged surface”, “ground and central hill”, “ground and central bump”.

FIGURE 4.2 – Reduced UML diagram for environments.py module

FIGURE 4.3 – Schemes of the current supported environments

CHAPTER 4. PATH PLANNING ALGORITHM 38

4.1.3 Drones

Module drones.py is quite straightforward and its UML is show in Fig. 4.4: it is

composed of a single GenericDrone class, which contains the parameters needed to define

the maximum thrust, maximum banking angle, and the mass of some generic drone.

Objects of this class also have an attribute defining their position w.r.t. the world frame.

FIGURE 4.4 – Reduced UML diagram for drones.py module

4.1.4 Manipulable Object

The ManipulableObject class, whose simplified UML is in Fig. 4.5, works similarly to

the Environment class insofar as it is also constituted of several convex shapes (Object-

Shape objects) which bundle together to form a single object O. The difference is that

ManipulableObject objects also contain information about drone connections, such as the

drones di in question, the attachment points and normals, and the length of the cables.

An object from the ManipulableObject class is the element that will be manipulated by

the drones. Finally, since we will be dealing with squares by default, a function just to

create square objects has been implemented.

FIGURE 4.5 – Reduced UML diagram for objects.py module

CHAPTER 4. PATH PLANNING ALGORITHM 39

4.1.5 Simulator

The simulation.py module contains the Simulator class, which is mainly used to deter-

mine contact points between the object and its environment. This class uses the Pymunk

package (BLOMQVIST, 2022), which is a simple, python-based, 2d physics library, as a

back-end engine. The environment, manipulable object and drones are added to the sim-

ulation space, which can alter some of their properties, such as the current configuration.

Moreover, the Simulator object also detects shape overlapping, which is useful during the

movement phase of the program, since overlaps between the environment and the object

can occur. The UML for the Simulator class is shown in Fig. 4.6.

FIGURE 4.6 – Reduced UML diagram for simulation.py module

4.1.6 Constraint Calculator

In the constraints.py module, we implement the equations defined in sections 3.2.3 -

3.2.4. The UML for class ConstraintCalculator is show in Fig. 4.7. It is worth noting

that this class works in close proximity with the Simulator class when obtaining contact

information. Furthermore, this class uses the library qpsolvers (CARON, 2022) to solve

the minimization problems defined in 3.21 and 3.25. One important aspect of the compu-

CHAPTER 4. PATH PLANNING ALGORITHM 40

tational implementation of the minimization problem is that the package transforms the

strict inequalities presented into non-strict inequalities, meaning that solutions for two

different contact modes can be numerically equal.

FIGURE 4.7 – Reduced UML diagram for contraints.py module

4.1.7 Scenario

Finally, the Scenario class, whose UML is in Fig. 4.8, is comprised of parts from all the

previous classes, plus a few other attributes. In terms of the classes previously presented,

a scenario is comprised of:

• 1 Environment object

• 1 ManipulableObject object, to which are linked Nuav GenericDrone objects

• 1 Simulator object, which is linked to the Enironment object and to the Manipula-

bleObject object

• 1 ConstraintCalculator object, which is liked to the Simulator object

CHAPTER 4. PATH PLANNING ALGORITHM 41

As for the attributes of this class which were not previously defined, their explanation

is as follows:

• int time: Value of ∆t to be used in (3.7)

• vb time: Value of ∆t to be used in (3.8)

• init state: Initial configuration qinit of the manipulable object

• goal state: Goal configuration qgoal of the manipulable object

• parameters : Static dictionary containing some default values for the class

FIGURE 4.8 – Reduced UML diagram for scenarios.py module

As for the attribute name, this is what defines the scenario and is used as one of the

arguments of static function generate scenario. The other argument for the function is

the variable variant, which defines subtle changes upon the scenario, namely the initial

and goal configurations. The scenario names and their descriptions, together with possible

variants, are shown in Figs. 4.9 - 4.13, where the initial configuration is in blue and the

goal configuration is in green. When calling the main function, the name of the scenario

and the number of the variant desired are inputs supplied by the user. The python library

PyGame (SHINNERS et al., 2022) was used to visualize these scenarios.

CHAPTER 4. PATH PLANNING ALGORITHM 42

(a) Variant 1 (b) Variant 2 (c) Variant 3

FIGURE 4.9 – Scenario: “square on surface”

(a) Variant 1

FIGURE 4.10 – Scenario: “square over hill”

(a) Variant 1

FIGURE 4.11 – Scenario: “square over bump”

(a) Variant 1

FIGURE 4.12 – Scenario: “slide square on rugged surface”

CHAPTER 4. PATH PLANNING ALGORITHM 43

(a) Variant 1 (b) Variant 2 (c) Variant 3

(d) Variant 4 (e) Variant 5

FIGURE 4.13 – Scenario: “square with single drone”

4.2 RRT Path Planning Algorithm

The main sequence for executing our version of the rrt algorithm can be seen in

algorithm 1, which will now be explained part by part. First of all, we should define the

input and output of this algorithm. To run this algorithm, the inputs are the scenario

name and the variation desired, as well as if the user desires the algorithm to be animated

or not. As for the other parameters that could be adjusted, such as the times ∆t involved

and the weight wr in the distance function, these are variables which are saved in the

parameter attributes of the respective classes.

$ python main . py <scenario name> <var i a t i on> <animate>

• scenario name: one of the names defined in section 4.1.7.

• variation: integer number.

• animate: “false”, “partial” or “full”. Details the level of animation desired. Affects

time performance of the algorithm.

Three files should be seen as the output of the program: one “tree info.txt”, which

contains information about the program execution, and two json files, with one represent-

ing the full tree and the other representing the path to the goal. As for the tree, it was

CHAPTER 4. PATH PLANNING ALGORITHM 44

modeled as a dictionary of the form {qi : [(qd, d⃗, contact-modes)]}, which means that the

tree is a dictionary where each key is an object configuration qi which points to a list of

edges, where edges are defined by the destination object configuration qd obtained from

3.26, the position of the drones for the movement d⃗, and the contact modes involved in

the movement.

Algorithm 1: Expansion of the random tree T
1 Function expand(T : Tree)

2 while not T .found goal and T .nodes < T .max nodes do

3 qrand = generate-random-node(T , prob)

4 qnear = find-closest-node(T , qrand)

5

6 T .snap-simulator-to-node(qnear)

7 T .update-simulator-information()

8

9 vd = direct-velocity(qnear, qrand)

10 possible modes = T .simulator-enumerate-modes()

11 for contact modes ∈ possible modes do

12 forces = solve-force-problem(contact modes)

13 drones pos, are drones valid = inverse-configuration(forces)

14

15 vo = solve-velocity-problem(contact modes, vd)

16

17 if (are drones valid) and (vo is not None) and (forces is not None)

then

18 qnew, is node valid = move-object(qnear, vo)

19 if is node valid then

20 T .found goal = T .is-goal(qnew)

21 T .add-node(qnew)

22 T .node(qnear).add-edge(qnew, drones pos, contact modes)

23 end

24 end

25 end

26 end

27 end

We shall now describe the functions involved in algorithm 1. Right off, the function

“generate-random-node” returns a random object configuration qrand which respects the

limits of the environment. The argument of the function is a probability which specifies

the chance of qrand = qgoal. This argument can be varied to account for more aggressive

CHAPTER 4. PATH PLANNING ALGORITHM 45

pursuits of the goal. The function “find-closest-node” searches all the keys in the tree

and returns the object configuration which is the closest to qrand, based on (3.9). The

next two functions “snap-simulator-to-node” and “update-simulator-information” simply

recompute the contacts p⃗ and n⃗, as well as the grasp map G, on the object after changing

its configuration qnear.

After updating the object’s contact information, we calculate the direct body velocity

between the current configuration and the desired configuration using (3.8), implemented

in function “direct-velocity”, since this does not depend on the contact mode chosen.

Also, we can now enumerate the possible contact modes, which in total are nmodes =

2natt · 4nenv where natt and nenv are the number of attachment and environment contact

points respectively. Of course, not every one of these modes will always be feasible, and

(MASON, 2001) even describes an algorithm for the purpose of determining which are, but

we’ll ignore this problem in this work, for there is little gain to be obtained from this

method in 2D scenarios. To save programming time, it is easier to just iterate through

all possible contact modes, regardless of a priori feasibility, which is what the algorithm

does next.

Considering the constraints in (3.17), (3.18) and (3.22), we see that the value of the

forces on the object and the feasible body velocity depend on the contact modes chosen.

Function “solve-force-problem” compiles the matrices for the system in (3.20) and solves

the minimization in (3.21) The value of these forces is then used in function “inverse-

configuration” to calculate equations (3.16) and (3.15) and to verify if the drone limits

are respected. Finally, the same contact modes are used to find the velocity constraint

matrices in (3.24) and solve the problem in (3.25) in function “solve-velocity-problem”,

which yields vo, the velocity which is the closest to vd while still respecting the constraints

imposed by the contact modes.

If there is a valid set of forces that solve the problem, and these forces result in

valid drone positions, and there is a feasible velocity which respect the constraints, then

we try to apply the velocity to the body using (3.26). The function “move-object” is a

bit complex and is expanded upon in algorithm 2. First and foremost, at least one of

the components of velocity vo must be higher than a certain threshold in order for the

movement to be computed. If that is the case, a new object configuration is obtained

via function “apply-body-velocity”, which implements (3.26). The tricky part is function

“check-validity”. This does two things: 1) it sees if the new object configuration is not

overlapping any environment shape and 2) it checks if there is at least one possible set of

forces that can keep the new configuration in static equilibrium. The function checks this

set of forces by setting all attachment contact modes to “strained” and all environment

contact modes to“fixed”, which is the set of contact modes that exerts the least force upon

the object. The reason for this check is to avoid tree nodes from which no expansion can

CHAPTER 4. PATH PLANNING ALGORITHM 46

possibly occur, for it is impossible to keep the object static. More on the consequences of

this post-movement check will be shown in chapter 5.

Algorithm 2: Function “move-object”

1 Function move-object(qcurrent, vo)

2 if abs(vo) < threshold then

3 return qcurrent, False

4 else

5 qnew = apply-body-velocity(qcurrent, vo)

6 is state valid = check-validity(qnew)

7 return qnew, is state valid

8 end

Finally, if the new configuration if valid, functions “add-node” and “add-edge” just add

the corresponding node and edge, which are based upon the tree formulation which were

previously shown.

5 Results

The scenarios described in section 4.1.7 were run by means of the previous algorithm,

with their results described below. Unless otherwise stated, the program was run with a

limit of 500 nodes on the tree, a probability of 20% of sampling the goal configuration,

and a goal radius of 0.2 (for wr = 1). Considering the specific implementation of the

simulation, it is important to state that the objects shown in the pictures were also

actuated, with their positions controlled directly together with the position of the drones.

The reason for this is that Pymunk does not deal well with moving constraints. Moreover,

as will be discussed in Chapter 6, translating the movement of the drones into movement

of the object is not always simple in practice. This is why we chose to also control the

position of the object in these animations.

5.1 “Square on surface” Scenario

5.1.1 Variant 1

This simple scenario serves to test some basic properties of the algorithm. There is

a remarkable property to this scenario in that its result, shown in Fig. 5.1 is counter-

intuitive: instead of simply sliding the object on the surface, the drone lifts it and reaches

the goal from above. This is not the most efficient way to solve the problem (meaning

that the algorithm is not optimal), and it is clear that the object does not explore the

manifold, but it arrives at the goal nevertheless. Some data for this scenario is available

in Table 5.1.

CHAPTER 5. RESULTS 48

(a) Extended tree (b) Goal path (c) Final object position

FIGURE 5.1 – “Square on surface” variant 1

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal

5/5 6.572 s 97 25 77 0.191

TABLE 5.1 – Average values for scenario 1 - variant 1

5.1.2 Variant 2

If the block is allowed to leave the surface, the problem is not solved. Fig. 5.2 shows

this situation: even though the object gets to a minimal distance of 0.275 to the goal

configuration, it is still unable to reach this configuration. If we ensure that the block

stays on the surface, the algorithm is successful in dealing with this scenario. Comparison

with scenario 5, variant 2 (which was actually tested first), hints that keeping the object

attached the surface is key to solving the rotation problem. Indeed, by restraining the

object’s move so that it stays attached to the surface, we get solutions such as the one in

Fig. 5.3 and the results registered in Table 5.2.

FIGURE 5.2 – Extended tree - Scenario 1 variant 2

CHAPTER 5. RESULTS 49

(a) Extended tree (b) Goal path (c) Final object position

FIGURE 5.3 – “Square on surface” variant 2 - alternate version with movement restricted to surface

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal

4/5 8.879 s 95 29 64 0.151

TABLE 5.2 – Average values for scenario 1 - variant 2

5.1.3 Variant 3

This scenario variant explores the capability of the drone to deal with goals that

include rotation. By setting the goal in the air, we free the object from any constraint

requirements except that it be in equilibrium at all times. We see in Fig. 5.4 that the

object gets to the goal, albeit through a kind of crooked path. Information about the

results of this scenario are shown in Table 5.3.

(a) Extended tree (b) Goal path (c) Final object position

FIGURE 5.4 – “Square on surface” variant 3

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal

5/5 5.415 s 88 27 80 0.188

TABLE 5.3 – Average values for scenario 1 - variant 3

CHAPTER 5. RESULTS 50

5.2 “Square over hill” Scenario

5.2.1 Variant 1

This scenario was designed to check if the drone could avoid an obstacle in its path.

In this scenario, it would be impossible to arrive at the goal if we pursued it directly,

without any random sampling. The results shown in Fig. 5.5 show that the drones can

indeed contour an obstacle. Results for this scenario are show in Table 5.4.

(a) Extended tree (b) Goal path (c) Final object position

FIGURE 5.5 – “Square over hill” variant 1

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal

5/5 88.53 s 306 62 403 0.190

TABLE 5.4 – Average values for scenario 2 - variant 1

5.3 “Square over bump” Scenario

5.3.1 Variant 1

Fig. 5.6 shows a successful case when this scenario was executed. It is worth noting

that the objective here was to try to flip the object using the bump, without lifting,

therefore a constraint was created where at least one of the points of the object must be

touching a surface. Table 5.5 shows this scenario is often unsuccessful, but it did manage

to achieve its objective more than once.

CHAPTER 5. RESULTS 51

(a) Extended tree (b) Goal path (c) Final object position

FIGURE 5.6 – “Square over bump” variant 1

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal

2/5 140.21 s 490 40 415 0.315

TABLE 5.5 – Average values for scenario 3 - variant 1

5.4 “Slide square on rugged surface” Scenario

5.4.1 Variant 1

The objective to this scenario is to see how the model behaves when faced with different

friction coefficients. If we allow unrestricted movement of the object, we have seen before

that the object will typically be lifted from the surface, which kind of defeats the purpose

of this scenario, such as in Fig. 5.7.

(a) Extended tree (b) Goal path (c) Final object position

FIGURE 5.7 – “Slide square on rugged surface” variant 1

Therefore, in order to study this scenario, we have placed the condition that the contact

mode “separate” is not valid for environment contact points, which means the object will

stay attached to the surface and cannot rotate, such as in Fig. 5.8. The accumulated

data for this scenario is seen in Table 5.6.

CHAPTER 5. RESULTS 52

(a) Extended tree (b) Goal path (c) Final object position

FIGURE 5.8 – “Slide square on rugged surface” variant 1 - alternate version with movement restricted
to surface

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal

5/5 57.33 s 57 21 96 0,135

TABLE 5.6 – Average values for scenario 4 - variant 1

As for the behavior of the object on the surface, it was observed that the change in

frictions was reflected in the drones. Taking the rightmost drone as representative, the

angle of its cable with the vertical direction increases by around 3% when it is in the red

zone as opposed to its value in the blue zone. Drone thrust increased by 46% in the same

case (for a massless drone). Both these values are in agreement with the expectation that

the drones will have to offer more push in the horizontal direction to compensate the

higher friction of the red zone as opposed to the lower friction of the blue zone.

5.5 “Square with single drone” Scenario

5.5.1 Variant 1

Variant 1 of this scenario offers some interesting insight into the movement of the

drone, which is along the same lines as scenario 1, variant 1: namely that the algorithm

does not optimize for minimal drone effort. In effect, the contact modes on the object

alternate from “separate”, which entails more effort on the drone’s part, and “right-slide”,

which alleviates contact on the drone by allowing the surface to counter some of the

object’s weight. Fig. 5.9 shows a moment where the drone is lifting the object and a

moment when it is dragging the object. The full scenario can be seen in Fig. 5.10 and its

details are summarized in Table 5.7.

CHAPTER 5. RESULTS 53

(a) Drone dragging the object on the table. Its angle compen-
sates the table’s friction

(b) Drone lifting the object, which only slightly touches the
table

FIGURE 5.9 – Comparison between two different behaviors for the drone-object system, which alternate
among each other during transport

(a) Extended tree (b) Goal path (c) Final object position

FIGURE 5.10 – “Square with single drone’ variant 1

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal

5/5 14,54 s 163 14 77 0.159

TABLE 5.7 – Average values for scenario 5 - variant 1

5.5.2 Variant 2

Contrary to the analogous variation in the first scenario - where two drones had to

rotate the object in the direction of the movement - this time the algorithm is successful,

mainly because it is extremely unlikely that a single drone could lift the object from the

surface in our sampling method because of the quasi-static condition (since the object has

to stay static at each moment, the desired pose would need to have an angle equal to zero

so that the object could be lifted). Data about this scenario is summarized in Fig. 5.11

and Table 5.8.

CHAPTER 5. RESULTS 54

(a) Extended tree (b) Goal path (c) Final object position

FIGURE 5.11 – “Square with single drone’ variant 2

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal

4/5 6.853 s 113 22 57 0.106

TABLE 5.8 – Average values for scenario 5 - variant 2

5.5.3 Variant 3

As shown in Table 5.9, this variant is unsuccessful. Fig. 5.12 shows that the object

explores the surface, but doesn’t get close enough in rotation to match the goal.

FIGURE 5.12 – Extended tree - Scenario 5 variant 1

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal

0/5 37.39 s 501 - 318 1.669

TABLE 5.9 – Average values for scenario 5 - variant 3

CHAPTER 5. RESULTS 55

5.5.4 Variant 4

The results for this variant are registered in Fig. 5.13 and Table 5.10. For reasons

that will become clear in the following variant, the reason why the number of nodes in

the tree is equal in average to the number of nodes in the path is because the object only

moves when the goal is sampled. This is because the goal’s angle is exactly zero, which

enables quasi-static movement.

(a) Extended tree (b) Goal path (c) Final object position

FIGURE 5.13 – “Square with single drone’ variant 4

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal

5/5 4.443 s 30 30 167 0.192

TABLE 5.10 – Average values for scenario 5 - variant 4

5.5.5 Variant 5

Variant 5 is basically a combination of variant 4 and variant 2, which are both success-

ful. We see, however, that variant 5 is unsuccessful: not only it doesn’t reach the goal,

it does not even add nodes to the tree, as shown in Table 5.11. The explanation for why

no nodes are added can be seen in Fig. 5.14: from the starting position, the object gets

a random sampled point (yellow) as destination; the static condition is checked before

the movement and there are no constraints on the velocity, so it moves in translation and

rotation towards the next goal. After its movement, the object now has an angle, meaning

it cannot be kept statically by a single drone, therefore the new point is not added to the

tree. This process is then repeated. The only way for the object to move in this case is if

the sampled point has exactly zero angle, but the chance of that happening is quite low

(but non-zero, since the sampling is discrete).

CHAPTER 5. RESULTS 56

(a) Before movement (b) After movement

FIGURE 5.14 – Movement in scenario 5 variant 5

Successes Runtime Nodes in tree Nodes in path Sampled Nodes Min distance to goal

0/5 Inf s 1 - Inf 5.565

TABLE 5.11 – Average values for scenario 5 - variant 5

6 Possible Improvements and Next Steps

Considering the results previously presented, some improvements to the model used

are suggested so that better performance can be achieved.

6.1 Extending RRT to the maximum

The formulation presented in algorithm 1 uses small, fixed increments when calculating

the object’s movement. As we have seen, this results in the movement manifolds not being

explored. Recall scenario 1 variation 1, for example, where the simplest solution would

just be to slide the object on the table.

Based upon these considerations, one possible improvement for the model is to expand

the tree in a manifold until vo = 0, as exemplified in Fig. 6.1, which illustrates this

idea for the case where all environment contacts are of mode “right-slide”. As shown by

(CHENG et al., 2021b), applying this behavior means that we project configurations upon

the movement manifold.

FIGURE 6.1 – Comparison of fixed distance increment versus moving object until vo = 0

Preliminary applications of this idea show that adapting the algorithm for maximum

extension allows us to solve scenarios which were previously unsolved, such as scenario 5,

variation 3, as shown in Fig. 6.2. The method also results in fewer nodes in the solution

CHAPTER 6. POSSIBLE IMPROVEMENTS AND NEXT STEPS 58

path. On the other hand, implementation of this modification should take into account

how to verify collision for these long distance, so as to ensure that the object does not

trespass obstacles.

(a) Goal path (b) Final object position

FIGURE 6.2 – “Square with single drone’ variant 3 - Alternate version with RRT extending until vo = 0

6.2 Preliminary simulations in the ROS/Gazebo environ-

ment

As mentioned before, during these simulations the object was also actuated, the reason

being that Pymunk doesn’t work properly when the constraints are moving. A more

realistic simulation environment can be found in the Gazebo software.

The PX4 flight control stack can be used to simulate drone movement/control in

Gazebo. Its architecture for simulations is show in Fig. 6.3. The main advantage of the

PX4 is that we can easily switch between hardware-in-the-loop (HITL) and software-in-

the-loop (SITL) behavior, meaning the drone’s control in both real life and simulation

are identical. Combining this feature with the accuracy of Gazebo’s physics, one gets a

high degree of realism when running a simulation. Moreover, using the ROS middleware,

it is possible to both send commands to and receive data from the drone. Considering all

these points, it is easy to understand why the triad PX4/ROS/Gazebo, such as in Fig.

6.4, is so popular for commercial applications.

CHAPTER 6. POSSIBLE IMPROVEMENTS AND NEXT STEPS 59

FIGURE 6.3 – Architecture of the PX4 flight control stack. Source: (JOSEPH; CACACE, 2018)

FIGURE 6.4 – Relation between PX4, Gazebo and ROS

In this new, more precise environment, some behaviors which were previously unseen

start to become noticeable. For example, in Fig. 6.5a, the drone was trying to pivot a

light box around one of its edges, in what is essentially a 2D problem. The box, however,

slides in a “non-uniform” fashion, spinning around the cable’s axis as in Fig. 6.5b and

transforming the problem into the 3D domain. This behavior sheds light on a couple of

issues with the current planning:

1. The planner is not robust, meaning any perturbation risks derailing the trajectory;

2. The current formulation might require a degree of precision that is higher than what

current available equipment can provide;

3. Since trajectories are pre-planned, the drone cannot make on-the-fly corrections to

rectify eventual mistakes.

CHAPTER 6. POSSIBLE IMPROVEMENTS AND NEXT STEPS 60

(a) Drone pivoting box around one of its edges
(b) Box slides, transforming the problem into 3D and render-
ing the previous planning useless

FIGURE 6.5 – Gazebo simulation for scenario 5 (single drone)

Further tests using Gazebo/PX4 should be executed in order to get a better sense of

how the methodology proposed behaves in more realistic simulations.

6.3 Weighted planning

We remarked in chapter 5 that the path chosen does not always minimize the effort

required by the drones. One possible way to do this is to create a cost function C(T⃗) that

is a function on the drones’ thrust, which could be attached to the edges. Since the path

to the goal is calculated via Dijkstra’s algorithm on top of the expanded tree, these costs

would enable us to choose the path thar requires the least effort on the drones’ part.

6.4 Smooth drone movement

The discretization of the drones’ paths give rise to two problems: the first is how to

make sure the movement of the drones from one position to another results in the desired

object configuration. Although we used the notation q(d⃗) previously, this is an abuse:

as illustrated in Fig. 6.6, the same drone configuration can result in different object

configurations, which means the path to get to a destination is also important, and was

largely ignored during discretization.

CHAPTER 6. POSSIBLE IMPROVEMENTS AND NEXT STEPS 61

FIGURE 6.6 – Two different object configurations that can arise from the same drone configuration

The second problem that needs to be dealt with is that the path found is not always

“smooth”: for example, in Fig. 6.7, the two drones alternate which one is “strained” and

which one is “loose” between one path point and the other. This situation is evidently not

realistic.

FIGURE 6.7 – Drones alternating contact mode between one step and the other

6.5 Quasi-dynamic formulation

Scenario 5 (especially variant 5) showed that the quasi-static condition might be too

restrictive to solve certain situations. Moreover, this restriction is unrealistic insofar as

there is no link between velocity and force except that both should be valid for the

movement to happen. One possible modification that should be studied is to substitute

(3.19) for a quasi-dynamic formulation (CHENG et al., 2021a):

CHAPTER 6. POSSIBLE IMPROVEMENTS AND NEXT STEPS 62

Mv̇o = G(c)λ⃗+ F⃗B
e (q) (6.1)

In this formulation, we should use a small time increment so that accelerations are

not too significant. Under this relaxed assumption, we could get solutions for some of the

scenarios which were previously unsolved and also have an explicit link between force and

velocity.

7 Conclusion

From what has been shown, it is possible to see that the method explored has potential.

It succeeds, in several scenarios, in interacting with the environment towards its goal and

also in coordinating the movements of the several drones involved. On the other hand, it

also has some noticeable shortcomings, such as being unable to plan a trajectory for cases

that are only slightly harder than the previous ones (and which could be easily solved by

a human). There is also no confirmation whether the method has the required robustness

to work on real-life situation, which is a point that must be addressed.

All in all, weighting in the successes, failures and open questions presented, it is

reasonable to conclude that the method warrants further research before a final verdict

can be reached.

Bibliography

BERENSON, D.; SRINIVASA, S. S.; FERGUSON, D.; KUFFNER, J. J. Manipulation
planning on constraint manifolds. In: IEEE. 2009 IEEE international conference on
robotics and automation. Proceedings [...]. [S.l.: s.n.], 2009. p. 625–632.

BLOMQVIST, V. Pymunk repository. 2022. https://github.com/viblo/pymunk.
Accessed: 2022-08.

BYRNE, R. W.; BYRNE, J. M. et al. Manual dexterity in the gorilla: bimanual and
digit role differentiation in a natural task. Animal Cognition, Springer, v. 4, n. 3, p.
347–361, 2001.

CARON, S. Qpsolvers repository. 2022.
https://github.com/stephane-caron/qpsolvers. Accessed: 2022-08.

CHENG, X.; HUANG, E.; HOU, Y.; MASON, M. T. Contact mode guided motion
planning for quasidynamic dexterous manipulation in 3d. arXiv preprint
arXiv:2105.14431, 2021.

CHENG, X.; HUANG, E.; HOU, Y.; MASON, M. T. Contact mode guided
sampling-based planning for quasistatic dexterous manipulation in 2d. In: IEEE. 2021
IEEE International Conference on Robotics and Automation (ICRA).
Proceedings [...]. [S.l.: s.n.], 2021. p. 6520–6526.

EADE, E. Lie groups for 2d and 3d transformations. URL http://ethaneade. com/lie.
pdf, revised Dec, v. 117, p. 118, 2013.

FINK, J.; MICHAEL, N.; KIM, S.; KUMAR, V. Planning and control for cooperative
manipulation and transportation with aerial robots. The International Journal of
Robotics Research, SAGE Publications Sage UK: London, England, v. 30, n. 3, p.
324–334, 2011.

JOSEPH, L.; CACACE, J. Mastering ROS for Robotics Programming: Design, build,
and simulate complex robots using the Robot Operating System. [S.l.]: Packt
Publishing Ltd, 2018.

LAAS. LAAS website. 2022. https://www.laas.fr/public/en. Accessed: 2022-08.

MASON, M. T. Mechanics of robotic manipulation. [S.l.]: MIT press, 2001.

MURRAY, R. M.; LI, Z.; SASTRY, S. S. A mathematical introduction to robotic
manipulation. [S.l.]: CRC press, 2017.

https://github.com/viblo/pymunk
https://github.com/stephane-caron/qpsolvers
https://www.laas.fr/public/en

BIBLIOGRAPHY 65

OLLERO, A.; TOGNON, M.; SUAREZ, A.; LEE, D.; FRANCHI, A. Past, present, and
future of aerial robotic manipulators. IEEE Transactions on Robotics, IEEE, v. 38, n. 1,
p. 626–645, 2021.

SANALITRO, D.; SAVINO, H. J.; TOGNON, M.; CORTÉS, J.; FRANCHI, A.
Full-pose manipulation control of a cable-suspended load with multiple uavs under
uncertainties. IEEE Robotics and Automation Letters, IEEE, v. 5, n. 2, p. 2185–2191,
2020.

SHINNERS, P. et al. PyGame. 2022. http://pygame.org/. Accessed: 2022-08.

SREENATH, K.; MICHAEL, N.; KUMAR, V. Trajectory generation and control of a
quadrotor with a cable-suspended load-a differentially-flat hybrid system. In: IEEE.
2013 IEEE International Conference on Robotics and Automation. Proceedings [...].
[S.l.: s.n.], 2013. p. 4888–4895.

http://pygame.org/

FOLHA DE REGISTRO DO DOCUMENTO

1. CLASSIFICAÇÃO/TIPO 2. DATA 3. DOCUMENTO Nº 4. Nº DE PÁGINAS

TC 22 de novembro de 2022 DCTA/ITA/TC-081/2022 65

5. TÍTULO E SUBTÍTULO:

Manipulating a cable-suspended object with multiple UAVs and environment contacts in 2D

6. AUTOR(ES):

Leonardo Mouta Pereira Pinheiro

7. INSTITUIÇÃO(ÕES)/ÓRGÃO(S) INTERNO(S)/DIVISÃO(ÕES):

Instituto Tecnológico de Aeronáutica – ITA

8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR:

UAV; Fleet; Manipulation; Cable-suspended; RRT; Contact modes

9. PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO:

Aeronaves não-tripulada; Cabos de comunicação; Técnicas de amostragem; Aeronaves teleguiadas; Véıculo
pilotado remotamente; Engenharia aeroespacial.
10. APRESENTAÇÃO: (X) Nacional () Internacional

ITA, São José dos Campos. Curso de Graduação em Engenharia Aeroespacial. Orientador(es): Prof. Dr.
Christopher Shneider Cerqueira. Publicado em 2022
11. RESUMO:

Considering a fleet of multicopter drones, where each drone is attached via cables to the same object, the problem
of automatically planning the path of these drones so that the object can be manipulated from an initial pose to
a desired pose merits more studies, given the problem’s wide range of potential applications. This work proposes
that this path planning can be modeled as a contact mode guided, sampling-based planning problem, where a
constrained trajectory is generated using sampling techniques. Initial applications of this method to 2D scenarios
are shown, which illustrate the successes or failures of the method for each scenario type. Given the analysis of
these results, some possible improvements are then proposed.

12. GRAU DE SIGILO:

(X) OSTENSIVO () RESERVADO () SECRETO

	Cover
	Face Page
	Cataloging-in-Publication
	Thesis Committee Composition:
	Dedication
	Acknowledgments
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Hypothesis
	1.3 Objective
	1.4 Organization of this Work

	2 Context
	2.1 LAAS-CNRS: A Research Lab
	2.2 Team Robotics and Interactions (RIS)
	2.3 UAV Research Internship at RIS

	3 Formulation of the UAV-Object Manipulation Problem
	3.1 Formal Description of the Problem
	3.2 Problem Tools
	3.2.1 SE(2) Algebra
	3.2.2 Grasp Map: Relating Contact Frames To Body Frame
	3.2.3 Drone Limitations and Description
	3.2.4 Constrained motion

	4 Path Planning Algorithm
	4.1 Classes and Program Diagram
	4.1.1 Algebra Module
	4.1.2 Environment
	4.1.3 Drones
	4.1.4 Manipulable Object
	4.1.5 Simulator
	4.1.6 Constraint Calculator
	4.1.7 Scenario

	4.2 RRT Path Planning Algorithm

	5 Results
	5.1 ``Square_on_surface'' Scenario
	5.1.1 Variant 1
	5.1.2 Variant 2
	5.1.3 Variant 3

	5.2 ``Square_over_hill'' Scenario
	5.2.1 Variant 1

	5.3 ``Square_over_bump'' Scenario
	5.3.1 Variant 1

	5.4 ``Slide_square_on_rugged_surface'' Scenario
	5.4.1 Variant 1

	5.5 ``Square_with_single_drone'' Scenario
	5.5.1 Variant 1
	5.5.2 Variant 2
	5.5.3 Variant 3
	5.5.4 Variant 4
	5.5.5 Variant 5

	6 Possible Improvements and Next Steps
	6.1 Extending RRT to the maximum
	6.2 Preliminary simulations in the ROS/Gazebo environment
	6.3 Weighted planning
	6.4 Smooth drone movement
	6.5 Quasi-dynamic formulation

	7 Conclusion
	Bibliography
	Folha de Registro do Documento

