
ARCADIA PRIMER
[MBSE][LEC-007]

07:16

1

SUMMARY

07:16

2

REVIEW OF OUR APPROACH

07:16

3

OUR APPROACH: OPM & ARCADIA HYBRID

Arcadia

Analysis

MDO

OPM

Analysis

MDO

CONCEPT MODELLING ARCHITECTURE MODELLING

07:16

4

The start:
How do we explain ideas to each other?

• Grab a pen and piece of paper, or a chalk and
blackboard

• Scribble shapes with names next to them

• While talking, run lines with or without arrows among
the shapes

• Follow the reaction of the audience to see if idea is
understood

• Answer questions, continue scribbling…

07:16

5

• simple yet expressive, and
• intuitive yet formal

The Start:

Convert

Construct

Communicate

Concept

Models

fragmented knowledge
into explicit and
integrated knowledge

concise
models

The model to stakeholders

07:16

6

In OPM

•We are able to discuss conceptual decisions
• Do a fast state-machine simulation
• Identify needs and some stakeholders
• Identify main system elements to propose a CONOPs
• Proposal is to be a formal language that enables to capture a

fairly amount of information to understand how the system
will work.

• We could go from need to screw → but the method will get
confused and lacks more capabilities when the complexity is
“heavily” increased. (my opinion)07:16

7

Evolving:
How can we construct the architecture?

•Analyzing stakeholders' necessities

•Analyzing the system functions that interact within the
stakeholder’s necessities

•Creating a logical decomposition

•Creating a physical decomposition

•Distributing to the supply chain / development
organizations

07:16

8

07:16

9

ARCADIA METHOD
REF-006: VOIRIN, J.L. Model-based System and Architecture Engineering with the
Arcadia Method. Elsevier, 2017. ISBN 978-0-0810-1794-4.

REF-007: ROQUES, P. Systems Architecture Modeling with the Arcadia Method – A
Practical Guide to Capella. Elsevier, 2017. ISBN: 978-0-0810-1792-0

07:16

10

• System engineers have been making use of modeling techniques
for a long time. Structured analysis and design technique (SADT)
and structured analysis for real time (SA/RT) are some of the best
known of these, and date back to the 1980s. There are many other
approaches based on Petri nets or finite state machines. However,
these techniques are also limited by their range and expressivity, as
well as by the difficulty in integrating them with other formalisms
and with requirements.

• An interesting attempt was the publication of a UML variant for
system engineering in 2006–2007. This new language, called
SysML, was strongly inspired by version 2 of UML, but added the
possibility of representing system requirements, non-software
elements (mechanical, hydraulic, sensors, etc.), physical equations,
continuous flows (matter, energy, etc.) and allocations.
Unfortunately, in practice it has been shown that the filiation of
the SysML language to UML often leads to difficulty in terms of
comprehension and use for system engineers who are not also
computer scientists.

07:16

11

• This is the reason that led Thales to define the Arcadia
method, along with its underlying formalism, for its own
needs.

• It has been applied since 2011 in a growing number of
projects across a great variety of domains (avionics,
railway systems, defense systems in all fields, air traffic
control, command control, area surveillance, complex
sensor systems, satellite systems and ground stations,
communications systems, etc.), and in many countries
(France, Germany, United Kingdom, Italy, Australia,
Canada, etc.).07:16

12

07:16

13

Founding principles

• all of the engineering stakeholders share the same methodology,
the same information, the same description of the need and the
product in the form of a shared model;
• each specialized type of engineering (for example security,

performance, cost and mass) is formalized as a “viewpoint” in
relation to the requirements from which the proposed architecture
is then verified;
• the rules for the anticipated verification of the architecture are

established in order to verify the architecture as soon as possible;
• co-engineering between the different levels of engineering is

supported by the joint elaboration of models, and the models of
the different levels and specialties are deducted/validated/linked
one to the other.07:16

14

07:16

15

ARCADIA OPERATIONAL ANALYSIS

07:16

16

07:16

17

ARCADIA OPERATIONAL
CONCEPTS:

07:16

18

•Operational Capability: capability of an organization to
provide a high-level service leading to an operational
objective being reached (for example Provide weather
forecasts, etc.); - high-level objectives

07:16

19

•Operational Entity: entity belonging to the real world
(organization, existing system, etc.) whose role is to
interact with the system being studied or with its users
(for example Crew, Ship, etc.);

07:16

20

•Operational Actor: particular case of a (human) non-
decomposable operational entity (for example Pilot,
etc.);

07:16

21

•Operational Activity: process step carried out in order to
reach a precise objective by an operational entity, which
might need to use the future system in order to do so (for
example Detect a threat, Collect meteorological data,
etc.);

07:16

22

•Operational Interaction: exchange of information or of
unidirectional matter between operational activities (for
example meteorological data, etc.);

07:16

23

•Operational Process: series of activities and of
interactions that contribute toward an operational
capability.

07:16

24

•Operational Scenario: scenario that describes the
behavior of entities and and/or operational activities in
the context of an operational capability. It is commonly
represented as a sequence diagram, with the vertical axis
representing time.

07:16

25

Operational
Capability

Operational
Entity

Operational
User

Operational
Activity

Operational Interaction

Operational Process

Operational
Scenarios

is handled by

is handled by

Is composed by

has

has

07:16

26

Produce a
Meal

Kitchen

Cook

Buy food

Produce a Meal Process

1st you have to buy food

is handled by

is handled by

Is composed by

has

Put into a
pan

Turn on the
fire

Raw Food
Food on pan

2nd put (the raw food) into a pan

3rd with the raw food into a pan turn on the fire

07:16

27

WHAT IS IN THE OPERATIONAL
ANALYSIS (OA)

07:16

28

Operational Analysis

“What system users must achieve”
“What the users of the system need to accomplish”

• This perspective analyses the issue of operational users,
by identifying actors that have to interact with the system,
their goals, activities, constraints and the interaction
conditions between them.
•Analysis of the issues of operational users by identifying

the actors that must interact with the system, their
activities and their interactions with each other.07:16

29

• trying to best satisfy a customer need, without having an
imposed system scope

•OA should not mention the system, so as not to bar itself
from potentially interesting alternatives for achieving the
satisfaction of customer needs: it aims at understanding
this need without any a priori assumptions about how the
system will contribute thereto; this is to not restrict the
scope of possibilities too quickly.

07:16

30

• EXAMPLE.– Suppose that the customer need
is to be able to hang a mirror on a wall.

If this need is translated too quickly into “how
to attach a dowel to the wall with a drill?”

• this prematurely excludes other possibilities
(such as using glue, for example),

• and also criteria that would help guiding the
process toward the right solution (such as
the need or not to be able to disassemble
the mirror at a later time).07:16

31

Define Missions and Required Operational
Capabilities

• The first step consists of determining future system and
environment users’ missions – or more generally:
• their motivations, expectations, goals, objectives, intentions, etc.,

as well as the capabilities required to assume these missions.

• Existing constraints on the execution of the mission must also
be identified at all levels likely to impact it:
• actor skills, operating modes and responsibilities, rules and

associated procedures, existing means and systems, regulatory
constraints, temporal and programmatic aspects, etc.07:16

32

Perform operational needs analysis

• The goal is to capture the conditions for the completion
of a mission previously identified, and those for the
implementation of associated capabilities, mainly through the
activities and interactions of the key players that contribute
thereto.

• The various situations that directly shape and influence the
missions, nominal or non-nominal, and the worst cases likely to
be met, should be formalized. The analysis and the comparison
of situations and conditions of missions must constitute a
permanent concern; in fact, they are likely to guide both the
needs analysis, to develop it by revealing constraints likely to
have a high impact, but also the opportunities for development
of processes, the principles behind the implementation of the
mission, etc.

• The different situations encountered during the
mission are formalized in the form of scenarios that
specify conditions for the implementation of the
required capabilities and the contributions of each stakeholder
(actors, activities, interactions, etc.), as well as operational
processes that implement activities contributing to a capability
or part of the mission.

07:16

33

07:16

34

OPERATIONAL DIAGRAMS

07:16

35

Operational
Analysis

[OEDB]
Operational

Entity
Breakdown

[OCB]
Operational
Capability
Diagram

[OABD]
Operational

Activity
Breakdown

[OAIB]
Operational

Activity
Interaction

Diagram[OAS]
Operational

Activity
Scenario

[OAB]
Operational
Architecture

Diagram

[ORB]
Operational

Role Diagram

[OES]
Operational

Entity
Scenario

Identify the operational domain: who are the
actors and entities, which are their purposes?
Activities give a global view upon the operational
business goals.

Detail the operational activity breakdown,
describe the interactions between entities
and model the operational processes

Operational actors and entities are responsible for
performing the operational activities. Manage allocations
and deduce communication means between entities.

Create Scenarios to illustrate interactions between the
operational actors and entities

Describe the state machine of the system,
specifying which are its modes and states. Among
others, state machines can be created on the
following kinds of elements: system,
components, actors, classes (data), etc.

Describe the domain elements and the actually
exchanged data.
• Domain Elements: modeling elements of the

domain should not be "polluted" by technical
considerations (e.g.: internal representationof
data, database storage, access methods, etc.).
In the beginning, concentrate only on
elements that provide high-level semantic
related to the domain.

• Data actually exchanged between
components: used for example to type
parameters in interface operations. These data
have to be unambiguousand consistent.

Both the domain elements and actual data are
described in a Class diagram.

07:16

36

STEP BY STEP EXAMPLE

07:16

37

[OEDB] Operational Entity Breakdown

07:16

38

[OCB] Operational Capability Diagram

07:16

39

[OAIB] Operational Activity Interaction Diagram

07:16

40

[OABD] Operational Activity Breakdown

07:16

41

[OAS] Operational Activity Scenario

07:16

42

[ORB] Operational Role Diagram

07:16

43

[OAB] Operational Architecture Diagram

07:16

44

[OAB] Operational Architecture Diagram
<<Operational Process>>

07:16

45

[OES] Operational Entity Scenario

07:16

46

ARCADIA SYSTEM ANALYSIS

07:16

47

07:16

48

ARCADIA SYSTEMIC CONCEPTS:

07:16

49

• System: organized group of elements that function as a
unit (black box) and respond to the needs of the users.
The System owns Component Ports that allow it to
interact with the external Actors;

07:16

50

•Actor: any element that is external to the System (human
or nonhuman) that interacts with it. (for example Pilot,
Test operator, etc.);

07:16

51

• System Capability: capability of the System to provide a
highlevel service allowing it to carry out an operational
objective (for example provide meteorological data, etc.);

07:16

52

• Function: behavior or service provided by the System or
by an Actor (for example detect a threat, measure
altitude, etc.). A Function owns Function Ports that allow
it to communicate with the other Functions. A Function
can be split into subfunctions;

07:16

53

• Functional Exchange: unidirectional exchange of
information or of matter between two Functions, linking
two Function Ports;

07:16

54

•Component Exchange: connection between the System
and one of its external Actors, allowing circulation of
Functional Exchanges;

07:16

55

07:16

56

• Scenario: dynamic occurrence describing how the System
and its Actors interact in the context of a System
Capability. It is commonly represented in the form of a
sequence diagram, with the vertical axis representing
time;

07:16

57

• Functional Chain: element of the model that enables a
specific path to be designated among all possible paths
(using certain Functions and Functional Exchanges). This is
particularly useful for assigning constraints (latency,
criticality, etc.), as well as organizing tests.

07:16

58

WHAT IS IN THE SYSTEM
ANALYSIS (SA)

07:16

59

System Analysis

“What the system must achieve for users”
“What the system has to accomplish for the users”

• The SA perspective defines the expectations of the system, that is
to say what the system has to perform for users: it builds an
external functional analysis, based on the OA and input textual
requirements, to identify in response functions, services and
expected system behaviors, necessary to its users.
• external functional analysis as a response to identify the system functions

needed by its users (e.g. “calculate the optimal path” and “detect a
threat”), limited by the non-functional properties asked for.

• The System is identified as a modeling element at this level. It is a
“black box” containing no other structural elements, only allocated
Functions.

07:16

60

• The purpose of system needs analysis (referred to as SA
further in the text) is to define the contribution expected
of the system to users’ needs, as they are described in the
previous operational analysis (OA) and/or in the form of
requirements expressed by the client.
• SA delimits the functions required of the system,

distinguishing them from those assumed by the users or
external systems.
• It is essential to limit the functional analysis conducted in

SA to the sole capture of the need, and only of need,
excluding any implementation choice or details. This
allows freedom of choice to be maintained during the
subsequent development of the solution,07:16

61

Perform Capability Analysis

• Define the essential characteristics necessary for
the fulfillment of each operational capability (the problem
space), to uncover different alternative orientations likely to
satisfy these required capabilities as well as the criteria for
associated appreciation and choice (the solution space), and
to compare these orientations to find the one(s) exhibiting the
best compromise between the desirable characteristics.

• These parameters may concern the functional
contribution and the expected performance of the
system, obviously, but much further: organization, doctrines,
procedures and users’ roles, human factors, skills and training,
logistics footprint and deployment conditions, hosting
facilities, etc. Quantitative and qualitative metrics should be
defined to evaluate the satisfaction conditions for each of
these parameters.

• Capability analysis considers much more general aspects
than the functional issues: as the client organization,
organizational operating principles, roles and responsibilities,
nature and infrastructure capacity, safety, human factors and
users’ skills/training, logistics, acquisition and operation costs,
but also the potential complexity and implementational risks.

Want a
safe road

07:16

62

Perform Functional/non-Functional Need
Analysis
• The intent is to formalize the functional needs allocated to the

system, and to identify constraints, namely non-functional, to
which it will have to respond through its use under operational
conditions

• Assess the operational capabilities to which the system will have
to contribute, taking the preliminary capability trade-off analysis
(of “system capabilities”) into account - only needs-related
considerations should be included in this perspective dedicated
to the expression of the system needs as required by users

• In the event that actors or external systems are imposed by the
client (or the state of the art) and exhibit a complex or critical level
of interactions with the system, it is recommended to carry out
minimal functional and non-functional analyses for these external
systems or actors, and to compare them with the SA, to ensure the
compatibility between the two. At this point, an analysis of
available interfaces is desirable, to verify that planned
functionalities and interactions will be possible.

• Another way to address the needs functional analysis consists of
implementing each functional requirement into a few functions
and exchanges between them (often the verbs of the
requirement), the manipulated data (the names) and actors or
external systems..

07:16

63

Formalize and Consolidate the System Needs

• The good understanding and consolidation of system needs rely on
the three dimensions mentioned earlier, which are the OA,
requirements and the functional analysis of the system need.
• It is through their comparison that consistency and completeness

of the system need is assured: Are all activities and operational
processes correctly taken into account in the functional analysis?
Are all functional requirements (or even nonfunctional) correctly
captured? Is there any incompatibility between them?
• It may even be the case that the functional needs analysis results in

modifying the OA (e.g. changing an operator role for a more secure
behavior, or reviewing the distribution of roles should an
opportunity for system automation emerge); or alternatively, that
the functional analysis reveals an inconsistency or something
missing in the requirements.07:16

64

07:16

65

SYSTEM DIAGRAMS

07:16

66

System
Needs

Analysis

[CSA]
Contextual

System
Actors [MB] /

[MCB]
Mission

Capabilities

[SFBD]
System

Functional
Breakdown

[SDFB]
System

Functional
Dataflow

[FS]
Functional
Scenario

[SAB]
System

Architecture

[ES]
Exchange
Scenario

[CDI]
Contextual

Detailed
Interfaces

[CEI]
Contextual

External
Interface

[IS] Interface
Scenario

Identify the boundaries of the system : who
which are the actors, which are their goals?
Missions give a global view upon the system main
business goals and usages.
Capabilities provide a more operational and
finer-grained enlightenment, directly related to
customer requirements. Capabilities are meant to
be illustrated with scenarios.

Enrich and details the functional breakdown
with new system functions.
Describe the data flows between system
functions and identify specific functional
chains.

The system and the actors are responsible for
implementing the system functions. Manage these
allocations using an architecture diagram and deduce
component exchanges implementing the functional
exchanges.
Create dataflows scenarios to illustrate the functional
exchanges between the system and the actors.

Detail the interfaces of the system as well as the
ones of the actors, thus drawing the boundary
of the system.
Describe scenarios in order to specify the
dynamical behavior of the system.
Defining the interaction sequences and
identifying the interfaces are two very tight and
iterative activities.

Initialization and automated update of
the system analysis according to the
breakdown of operational activities.
The initialization and automated
updated of the system actors can also
be automatically performed from
selected operational entities / actors.
The transition tools create a first 1-1
traceability mapping between System
Analysis and Operational Analysis. Use
dedicated traceability matrices to
modify the traceability relationships.

07:16

67

STEP BY STEP EXAMPLE

07:16

68

IMPORT DECISION FROM OA

07:16

69

[CSA] Contextual System Actors

07:16

70

[MB] Mission (identify the mission related to the
capability and the actors)

07:16

71

[MBC] Mission Capabilities

07:16

72

[SAB] System Architecture

07:16

73

[SDFB] System Dataflow

07:16

74

[SFBD] System Functional Breakdown

07:16

75

[FS] Functional Scenario

07:16

76

[ES] Exchange Scenario

07:16

77

[CEI] Contextual External Interface

07:16

78

[CDI] Contextual Detailed Interface

07:16

79

[SAB] System Architecture with Requirements

07:16

80

LOGICAL ARCHITECTURE

07:16

81

07:16

82

LOGICAL ARCHITECTURE
CONCEPTS

07:16

83

• Logical Component: structural element within the
System, with structural Ports to interact with the other
Logical Components and the external Actors. A Logical
Component can have one or more Logical Functions. It
can also be subdivided into Logical subcomponents;

07:16

84

• Logical Actor: any element that is external to the System
(human or non-human) and that interacts with it (for
example Pilot, Maintenance operator, etc.).

07:16

85

• Logical Function: behavior or service provided by a
Logical Component or by a Logical Actor. A Logical
Function has Function Ports that allow it to
communicate with the other Logical Functions. A Logical
Function can be subdivided into Logical subfunctions;

07:16

86

• Functional Exchange: a unidirectional exchange of
information or matter between two Logical Functions,
linking two Function Ports;

07:16

87

•Component Exchange: connection between the Logical
Components and/or the Logical Actors, allowing
circulation of the Functional Exchanges;

07:16

88

07:16

89

• Logical Scenario: dynamic occurrence describing the
interactions between Logical Components and Logical
Actors in the context of a Capability. It is commonly
represented as a sequence diagram, with the vertical axis
representing the time axis;

07:16

90

• Functional Chain: element of the model that enables a
specific path to be designated among all possible paths
(using certain Functions and Functional Exchanges). This is
particularly useful for assigning constraints (latency,
criticality, etc.), as well as organizing tests;

07:16

91

WHAT IS IN THE LOGICAL
ARCHITECTURE (LA)?

07:16

92

Logical Architecture

“How the system will work to meet expectations”
“How the system will work to fulfill expectations”

• In response to the need expressed by the two previous
perspectives, it enables the first major choices of solution
design, first via an internal functional analysis of the system: it
describes the functions to be performed and assembled in
order to implement the service functions identified in the
previous phase. It continues with the identification of the
operational components implementing these solution
functions, integrating the non-functional constraints that we
chose to be addressed at this level.07:16

93

• The level of Logical Architecture aims to identify Logical
Components inside the System (“how the system will
work to fulfill expectations”), their relations and their
content, independently of any considerations of
technology or implementation.

•Next an internal functional analysis of the system must
be carried out: the subfunctions required to carry out
the System Functions chosen during the previous phase
must be identified; next, a split into Logical Components
to which these internal subfunctions will be allocated
must be determined, all the while integrating the
nonfunctional constraints that have been chosen for
processing at this level

07:16

94

• The definition of the LA (an activity often – and wrongly –
designated “logical architecture” for convenience)
consists mainly of a comparison between the needs
expressed in previous perspectives, a functional analysis
describing the system behavior chosen to satisfy
requirements, and a structural analysis intended to
identify the components that will constitute the system,
taking the chosen constraints and structuring principles
into account.

• The LA is therefore a first general vision, moderately
detailed, somehow an abstraction, of what the
architecture of the system will be07:16

95

The main activities to be undertaken for the definition
of the logical principle architecture are as follows:

• to define the factors impacting the architecture and
analysis viewpoints;

• to define the principles underlying the system behavior;

• to build component-based system structuring
alternatives;

• to select the architecture alternative offering the best
compromise.

07:16

96

Definition of the factors impacting the
architecture and analysis viewpoints

•Any properly designed architecture satisfies several
expectations and constraints of various kinds, which
constrain and influence or even direct its definition, and
whose satisfaction should be verified as early as possible
to minimize possible subsequent resumption costs.

• These factors that constrain the architecture depend largely on each domain, and each profession. As examples we
mention: delivered services and costs of course, expected performance, safety of operations, privacy, ease of
maintenance, life duration, energy or logistical footprint, availability, product policy, scalability, but also more
“aesthetic” considerations such as customer satisfaction.

07:16

97

• For each factor previously identified, the associated
constraints (especially nonfunctional and performance
ones), which can be applied to the needs and the
solution, must be expressed and quantified by metrics;
each candidate architecture will be analyzed according
to this viewpoint, to verify that good practice is correctly
followed.

• These decisions reflect know-how, the craft, in addition to the creativity of the engineering team, and will guide the
emergence of different alternatives as well as their comparison.

• Imposed factors and design choices must be categorized by importance or priority, in order to be able to arbitrate
between them when they result in antagonistic properties, or when certain constraints will have to be released to
find an acceptable compromise.

07:16

98

• In the case of the traffic control system, the first impact
factor is obviously the safety of goods and people. An
additional factor involves system operators, their training
and their required skills, the scope of their responsibility
and the role that must be assigned to them. We should
also take into account factors such as environmental
conditions, life duration, constraints on logistics and
maintenance.
• In the case of the traffic control system, let us mention the

required reliability rate and the system failure probability,
the capability to be able to operate in the event of partial
failure of certain subsystems; the maximal eligible number
of operators; extreme temperature ranges, humidity,
resistance to possible salt sprays; etc.

07:16

99

Definition of the behavior principles of the
system
• The objective is to formalize the principles of the desired behavior of the system, and to non-functional,

to which it has the responsibility to respond during its operation under operational conditions.

• A common mistake consists of considering the behavior of the
solution as a simple refinement of the previous functional
expression of need at a finer level of detail. The solution design
is much more than that: it is a take into account the
constraints, namely “creative” definition effort of a behavior
that meets the need (and that does not refine it), detailing the
processes and steps starting from the solicitations of the
system, up to the provision of services, results or outputs,
taking into account design decisions, mainly guided by the
factors and constraints identified previously.

07:16

100

•1 – identify and formalize need items captured. (tracing
to SA)

•2 – search for possible functions already in the LA that
could also play a role to solve the need. (minimize
functions)

•3 – verify function boundaries to achieve what is
expected of it.
• Scenarios / chains will add light to design decisions or to the

choice of product line.

•4 – build a complete and coherent global description
using the behavioral elements (scenarios/state machines)07:16

101

Construction of component-based system
structuring alternatives
• This step should reveal a number of

principle solutions, describing the
preliminary structure of the system,
built on the basis of the previous behavior,
incorporating both non-functional
associated constraints and the factors and
design choices underlying it.

• The system is broken down into principle
components called logical components.
The term “component” is understood here
in the general sense, as a constituent of
the system at this level; it can later be
implemented as a subsystem (or several),
equipment, one or more mechanical parts
or assemblies, one or more electronic
cards, a software program itself eventually
distributed or even a human contributor.

07:16

102

• The component building
process consists of grouping
together or segregating the
behavior functions previously
defined, according to the
constraints and criteria
imposed, in grouping sets that
thus constitute the
components. These latter can
themselves be structured by
subcomponents, according to
the same types of criteria if
necessary.
• It is recommended to submit

each choice of functional
grouping to the multi-viewpoint
analysis07:16

103

• The (preliminary) definition of interfaces
between components (or with external actors)
can be done at this level (or be postponed until
the definition of the physical architecture): they
are built based on the functional exchanges
linking the functions allocated to these
components or actors, and exchanges data (and
exchange elements) that these exchanges
convey; data and exchanges are mainly grouped
according to semantic proximity or usage
considerations.

• The actual exchanges between components are
also achieved by way of grouping functional
exchanges; combined with the capability to hide
subcomponents in order to consider those of
first level only, this also constitutes a level of
synthesis or even of abstraction able to hide the
complexity of functional exchanges, and to
reason on several levels of detail.07:16

104

• This static definition of interfaces
most often must be accompanied by
a dynamic definition, by creating
scenarios at the boundaries of the
components, and if necessary, state
and modes machines associated
with each contributor to exchanges
and managing this dynamics of
interfaces.

• Furthermore, states and modes can
be defined and allocated to
components, based on those
implemented at the system level in
the previous behavioral functional
analysis, and consistent with them.07:16

105

Selection of the architecture alternative offering
the best trade-off
• The purpose of this activity is to find among previous candidate

architectures the one that represents the best trade-off with
respect to all viewpoints under consideration, and to justify its
compliance to the need.

• Each alternative has in principle been evaluated based on the
major viewpoints impacting it – and their relative importance –
during its definition; the inadmissible nonconformities have
been eliminated, but as the evaluation is rarely binary, the
point is therefore now to compare the “merits” of each
candidate in a multi-criteria quantitative analysis, of which
previously identified viewpoint analyses, priorities and metrics
are key elements.07:16

106

07:16

107

LOGICAL ARCHITECTURE
DIAGRAMS

07:16

108

Logical
Architecture

[LFBD]
Functional
Breakdown

Diagram

[LDFB]
Functional
Data Flow

[FS] Functional
Scenarios

[LCBD] Logical
Components
Breakdown

[LAB] Logical
Architecture

[ES] Exchange
Scenario

[CII] Contextual
Internal

Interfaces

[IS] Interface
Scenario

Enrich and details the functional breakdown with
new logical functions.
Describe the data flows between logical functions
and identify specific functional chains.

The initialisation and automated updated of
the logical actors can be performed
according to system actors.
Use an architecture or breakdown diagram
to describe the system internal building
blocks from a logical point of view.Logical
components are intended to interact with
each other to achieve the functional goals of
the system.

Specify the dynamical behaviour of the logical
components by completing the interaction sequences
coming from the System Analysis. The enrichment of the
interaction sequences and the identification of the logical
interfaces are two very tight and iterative activities.
The scenario refinement process is iterative, each update
on a source can be automatically propagated to the target

Specify the dynamical behaviour of the logical
components by completing the interaction
sequences coming from the System Analysis. The
enrichment of the interaction sequences and the
identification of the logical interfaces are two very
tight and iterative activities.
The scenario refinement process is iterative, each
update on a source can be automatically
propagated to the target.

Initialization and automated update of the
logical functions according to the system
functions
The transition tools create a first 1-1
traceability mapping between Logical
Architecture and System Analysis. Use
dedicated traceability matrices to modify
the traceability relationships.

The logical components are responsible for implementing
the logical functions. Manage these allocations using an
architecture diagram and deduce component exchanges
implementing the functional exchanges.
Create dataflows scenarios to illustrate functional exchanges
between the components.

07:16

109

STEP BY STEP EXAMPLE

07:16

110

IMPORT DECISION FROM SA

07:16

111

[LAB] Logical Architecture

07:16

112

[FS] Functional Scenario

07:16

113

[ES] Exchange Scenario

07:16

114

[LFBD] Logical Functional Break down

07:16

115

[LDFB] Logical Data Flow

07:16

116

[LCBD] Logical Component Breakdown

07:16

117

PHYSICAL ARCHITECTURE

07:16

118

07:16

119

PHYSICAL ARCHITECTURE
CONCEPTS

07:16

120

•Behavior Physical Component: Physical Component
tasked with Physical Functions and therefore carrying out
part of the behavior of the System (for example software
component, data server, etc.);

07:16

121

•Node (or Implementation) Physical Component: Physical
Component that provides the material resources needed
for one or several Behavior Components (for example
processor, router, OS, etc.).

07:16

122

•At this level, the main concepts proposed by Arcadia are
similar to those of the Logical Architecture: Physical
Function, Functional Exchange, Physical Component,
Physical Actor, etc. However, there are some additional
concepts, notably:

07:16

123

•Physical Port: non-oriented port that belongs to an
Implementation Component (or Node). The structural
port (Component Port), on the other hand, has to belong
to a Behavior Component;

07:16

124

•Physical Link: non-oriented material connection between
Implementation Components (or Nodes). The
Component Exchange remains a connection between
Behavior Components. A Physical Link allows one or
several Component Exchanges to take place (for example
Ethernet cable, USB cable, etc.);

07:16

125

•Physical Path: organized succession of Physical Links
enabling a Component Exchange to go through several
Implementation Components (or Nodes).

07:16

126

07:16

127

WHAT IS IN THE PHYSICAL
ARCHITECTURE (LA)?

07:16

128

Physical Architecture

“how the system will be built”

• This perspective has the same objective as the logical architecture,
except that it defines the finalized architecture of the system, as it
should be completed and integrated. It adds the functions
required by the implementation and technical choices and reveals
the behavioral components that perform these functions. These
behavioral components are then implemented using host
implementation components that offer them the necessary
material resource.
• Defines the solution at a sufficient level of detail to specify the

developments and acquisitions of all subsystems (or components)
to be implemented, and to define and orientate the system
integration, verification and validation (IVV) phases.

07:16

129

• It is often at this level only that choices and constraints
are introduced related to implementation and production
technologies, to existing elements to be re-used. Any
ambiguities or inaccuracies that could still exist in the
logical architecture (LA), if they did not impact its
structuring, should this time be resolved, in order to
constitute clear development contracts for the identified
components.

•PA is the privileged place of co-engineering with
subsystem engineering and software or hardware
components.

07:16

130

The main activities to be undertaken for the
definition of the finalized PA

• to define the structuring principles of the architecture and
behavior;

• to detail and finalize the expected system behavior;

• to build and rationalize one or more possible system
architectures;

• to select, complete and justify the system architecture
retained.

07:16

131

Definition of the structuring principles of the
architecture and behavior

• The major objective of the PA is to minimize complexity
through rationalizing.
• One of the most used means of rationalization consists of

reducing diversity and heterogeneity within the solution, by
searching for similarities and therefore possible architecture
invariants (sometimes called “patterns”) that can be applied
more than once in the same manner – or configurable.
• Another classic way to overcome complexity is based on the

separation of concerns and their containment within parts of
the architecture as separate as possible from each other.

07:16

132

Detail and finalization of the expected system
behavior

•Define the expected behavior of the system, to a level of
detail and validation enough so that each of its
components can be implemented (or selected and
purchased), without any further risk or major questioning;
this definition must of course demonstrate compliance
with constraints, especially nonfunctional constraints, by
which the system will have to abide when being used
under operational conditions.

07:16

133

• In particular, the finalized behavior should not necessarily
be considered as a simple refinement of that defined in
the LA. The finalization of the chosen behavior in fact
often constitutes a re-designing, which must result from
the comparison between the principle behavior of the LA,
and the implications of the principles chosen in the PA:
technological choices and adoption of standards,
previous structuring principles, etc.

07:16

134

Construction and rationalization of one or more
possible system architectures
• This step is intended to define one or more solutions reflecting the

structuring principles defined in the LA, the previous finalized
behavior, satisfying the expected non-functional constraints and
applying technology and reuse choices decided in accordance with
the structuring principles adopted.

07:16

135

• In the simplest cases, or in systems with
a physical or electrical dominant, the
exchange items are often simple in their
description and usage at this
engineering and modeling level.
However, for more complex exchange
items, involving large numbers of
exchange contents elements, it is
desirable to be able to structure a list of
exchange items that can be extensive,
by grouping them by type of service
achieved, for example. This is the role of
the concept of an interface (also mainly
present in software design).07:16

136

• The PA complements this behavioral description by
way of the definition of implementation
components, or hosting physical components,
containing behavioral components and forming the
infrastructure of the system; the behavioral
components are deployed on these host
components, which provide necessary resources for
their behavior and hardware vectors (links) for their
communications. It may thus consist of high-
performance computers, resources for digital or
analog processing, mechanical systems,
evaporators, furnaces, chemical reactors, etc.

• Hosting physical components are themselves
connected by physical links, reflecting the media
that channel exchanges between behavioral
components (a cabled network, a satellite link, a
pipe or a mechanical shaft, for example).

• The same rationalization processes have to be
performed for hosting physical components as for
the behavior and behavioral components, in
compliance with the established structuring
principles.

07:16

137

Selection, completion and justification of the
system architecture
• Finalize the choices among potential alternatives, and verify

that the retained alternative satisfies, possibly by means of
an acceptable trade-off, all of the needs and constraints that
have been imposed thereon.
• For example, the implementation resources available may not

be sufficient to support an expected behavior or associated
properties (computational load too high for a given process in
computers supporting it, temperature and pressure too high
for a given pipe, etc.). This will lead to a redesigning of the
architecture, including a redecomposition and a different
distribution of behavioral components, or the use of other
implementation resources (more powerful computers, more
robust pipes).07:16

138

07:16

139

PHYSICAL ARCHITECTURE
DIAGRAMS

07:16

140

Physical
Architecture

[PFBD]
Functional
Breakdown

[PDFB]
Function Data

Flow

[FS] Functional
Scenario

[PCDB] Physical
Component
Breakdown

[PAB] Physical
Architecture

[ES] Exchange
Scenario

[CII] Contextual
Internal
Interface

[IS] Interface
Scenario

Enrich and details the functional breakdown with
new logical functions.
Describe the data flows between logical functions
and identify specific functional chains.

The initialization and automated updated of
the physical actors can be automatically
performed according to logical actors.
Define the physical components. A physical
component is a physical representation of
an entity in the system(hardware, software,
firmware, personnel, facilities, data,
materials, services and processes). It is in
charge of the implementation of one or
several logical components. A physical
component can be Node or Behaviour.

Delegate each logical interface to one physical
component. Create new physical interfaces between
components

Specify the dynamical behaviour of the physical
components by completing the interaction
sequences coming from the Logical
Architecture.The enrichment of the interaction
sequences and the identification of the new
physical interfaces are two very tight and iterative
activities.
The scenario refinement process is iterative, each
update on a source can be automatically
propagated to the target.

Initialization and automated update of the
logical functions according to the system
functions
The transition tools create a first 1-1
traceability mapping between Logical
Architecture and System Analysis. Use
dedicated traceability matrices to modify
the traceability relationships.

The behavioural physical components are responsible for implementing the physical
functions. Manage these allocations using an architecture diagram and deduce
component exchanges implementing the functional exchanges.
Manage the deployment of behaviour components on node components and deduce
physical links and paths. Create dataflows scenarios to illustrate functional exchanges
between the components.

07:16

141

STEP BY STEP EXAMPLE

07:16

142

IMPORT DECISION FROM LA

07:16

143

[PCBD] Component Breakdown

07:16

144

[PAB] Physical Architecture

07:16

145

Review of Component Breakdown

07:16

146

[FS] Functional Exchange

07:16

147

[PFBD] Functional Breakdown

07:16

148

[PDFB] Physical Functional Data Flow

07:16

149

EPBS (END PRODUCT
BREAKDOWN STRUCTURE) AND
INTEGRATION CONTRACTS

07:16

150

07:16

151

EPBS CONCEPTS

07:16

152

•COTS CI: component off the shelf
configuration item.
•CS CI: computer software

configuration item;
•HW CI: hardware configuration item;
• Interface CI: Interface Configuration

Item
•NDI CI: non-developed configuration

item;
•Prime Item CI: decomposable

configuration item;
• System CI: system-type configuration

item;
07:16

153

CONFIGURATION ITEMS

• The first one, CSCI 1, is a software
Configuration Item, carrying out
Behavior Component 1.

• The second item, HWCI 2, is a
material Configuration Item,
carrying out Node Component 1, as
well as Physical Link 1.

• The third, COTSCI 3, is an off the
shelf Configuration Item, carrying
out both Node Component 2 as
well as Behavior Component 3.

• Finally, the fourth, NDICI 4 is a non-
developed Configuration Item,
carrying out Behavior Component
2.07:16

154

HOW TO CREATE

07:16

155

PRODUCT BUILDING STRATEGY

“What is expected of each component, and the conditions
of its integration into the system”.

•Being the final stage of system design strictly speaking,
this definition of the Product Building Strategy (BS)
prepares later development, implementation, production,
acquisition stages of subsystems or components
identified in the physical architecture, and their
integration, up to the qualification of the system in an
operational environment.

07:16

156

• This level aims to deduce, from the Physical Architecture,
the conditions that each Component must satisfy to
comply with the constraints and choice of design of the
architecture identified in the previous phases (“what is
expected from the provider of each component”). The
Physical Components are often grouped into larger
Configuration Items that are easier to manage in terms of
industrial organization and responsibilities.

07:16

157

The main activities to carry out for the definition
of development, acquisition and integration
contracts are the following:
• to define the product breakdown structure;

• to finalize the development contracts of components to
be implemented;

• to consolidate the definition of components to be
acquired;

• to define the integration, verification and validation
strategy and processes.

07:16

158

Definition of the product breakdown structure

• The product breakdown structure lists
the set of all of the concrete elements,
to be created or acquired, constituting
the system as previously defined, and
that will be the subject of the integration
phase.
• Each item will have to be managed as

part of configurations in order to identify
its configuration state: its version, its
parameters or potential adaptation, etc.,
in each of the system definitions to
which it contributes. These elements are
part of the product breakdown structure.07:16

159

Finalization of development contracts of
components to be implemented

• The development technical contract of each component
describes what is expected of its supplier by the system
engineering team, to satisfy the definition of the physical
architecture produced and to secure later integration
validation verification stages.

• In principle, compliance with this contract should ensure
that the IVV of the system will be performed without
problem, and that functional as well as nonfunctional
needs will be satisfied.

07:16

160

For a behavioral component it describes

• the functions (or services)
• interfaces with its environment (other

components, actors external to the
system)

• the expected dynamic behavior, within
the component and at its boundaries
(shown by functional chains, scenarios,
states machines, etc.)

• the different versions of the
component to be delivered throughout
the IVV

• the expectations from the IVV specific
to this component may also be
requested in the form of scenarios or
functional chains to be demonstrated

• interfaces with the host component in
which it is inserted

• the amount of resources of this host
component and communications media
that are allocated thereto

• the potential contribution of the
component to the global data model of
the system

• the non-functional constraints to
which it will have to comply

• the possible product line constraints
(optional parts of services and
associated conditions)

• eventually, an extract of the conditions
of operational service focused on the
context of the component

• textual requirements, allocated to the
component, and its accompanying
definition above

07:16

161

For a hosting resource component it describes

• links, ports or hardware
interfaces with its
environment (other hosting
resource components, actors
external to the system)
• links and interfaces with the

host component containing it
• the resources that it has to

make available to behavioral
components
• the associated environmental

and regulatory characteristics

• textual requirements
• the constraints of the

product line

07:16

162

Consolidation of the definition of components to
be acquired

• The definition of the previous contract should in principle
also apply to components that are not meant to be
produced but acquired, and this can also apply to
preexisting off-the-shelf components.

• It is strongly recommended to give as much importance
to the analysis of existing components (acquired or
reused) as to others, following the previous approach,
most especially in the physical architecture.

07:16

163

Definition of the IVV strategy

• The IVV strategy defines the order in which operational
and system capabilities will be delivered and verified,
the order in which components and their functions will be
integrated and tested, and the conditions to achieve this:
namely, the nature of verification, the content of testing
campaigns and required test means and testbeds.

• The nature of the verifications demonstrating the
adequacy of the system or product with the need is often
characterized by the acronym IADT, for Inspection,
Analysis, Demonstration and Testing.

07:16

164

• Demonstrations and tests will bring forward the demand
exerted on the system by scenarios that will rely on those
described in the model; the expected behaviors that the IVV
will have to verify will be partially characterized by this same
model, particularly by following the functional chains and the
behavioral description that it comprises; similarly, the model
provides invaluable help to the investigation, analysis of
identified defects and their localization.

• In a number of cases, the optimization of the IVV will require
feedback into the architecture design in order to make it
more suitable for stimulating, observing and analyzing the
functioning, but also for the progressiveness of tests or for
facilitating the localization and containment of errors and
defects.

07:16

165

EPBS DIAGRAMS

07:16

166

EPBS

[CIBD]
Configuration

Item Breakdown

[EAB] EPBS
Architecture

Initialization and automated update of
the EPBS Architecture according to the
Physical Architecture model. Define
additional Configuration Items if
necessary

07:16

167

•NOTE – This level is much lower than the four previous
ones, in terms of concepts, diagrams and methodological
activities. In certain recent Arcadia presentations, it is no
longer even represented as an engineering level, but
rather as an “industrial organization” viewpoint on
physical architecture.

07:16

168

STEP BY STEP EXAMPLE

07:16

169

Moving from the Physical level to the EPBS level

07:16

170

• This level aims to use the Physical
Architecture to deduce the conditions
that each component must fulfill to
satisfy the design constraints and
architecture choices, identified in the
previous phases (“what is expected of
the provider of each component”).

• The Physical Components are often
gathered into Configuration Items that
are larger and more practical to
manage, in terms of industrial
organization and responsibilities.

• The classic problem consists of asking
ourselves whether we are going to
make the component, reuse a similar
one, buy it off the shelf, or subcontract
it out, etc.

From the PAB of the System

07:16

171

[EAB] EPBS Architecture

07:16

172

[CIBD] Configuration Items Breakdown

07:16

173

Traceability Matrix

07:16

174

TRANSVERSAL MODELLING

07:16

175

TRANSVERSAL MODELLING TOPICS

07:16

176

MODES AND STATES
Modeling system modes, states, configurations with Arcadia and Capella: method
and tool perspectives - 27th Annual INCOSE International Symposium (IS 2017)

07:16

177

MODES

• The definition of the system’s expected behavior (or therefore,
of one of the elements mentioned earlier) in situations
decided from the design is captured in the form of system
modes; each mode is characterized principally by the
functional content expected of the system in this mode (as a
mnemonic, we talk of a “mode of life” to express the different
expectations, priorities and activities in a life, and a “mode of
transport” to indicate the means of travel). A mode can convey
various concepts, such as a mission or process stage, a
particular behavior required of the system, conditions of use
such as a test or maintenance mode, a training mode, etc.

07:16

178

•As its principal
modes, the traffic
control system will
naturally have the
modes
characterizing the
principal situations it
should manage:
train departure,
train arrival and
road traffic.

07:16

179

STATES

• In the course of its life and use, the system also passes
through some states it undergoes (we say “What a state you
are in!” and we speak of a “state of alert or of emergency” to
indicate an unexpected situation). Most often, a state
characterizes mostly structural elements (presence or absence
of a component, availability or breakdown, integrity or lack of
it, availability of an external actor or loss of connection with it,
etc.).

• Transition from one state to another is often involuntary, and
will therefore result, for example, in a change in property for
one or more elements in the system (availability/unavailability
for example).07:16

180

• The level crossing can be found in a state occupied by a
vehicle stuck on the track, or on the contrary, free (as
expressed by the states of the control system itself). This
situation is of course foreseen, but not on the initiative of
the system, so it is undergone by the system, which must
consequently react.

07:16

181

CONFIGURATION

• To characterize the system when it is in a given mode or
state, we will define the notion of configuration: a
configuration identifies a set of model elements, of all
types (for example functions, components, exchanges,
etc.), globally involved in use of the configuration, at a
given instant. A configuration can be attached to one or
more modes and/or states.

07:16

182

•A configuration intended to describe the expectation of a
mode will tend to be (though not exclusively) function
dominant (capabilities, functions, exchanges, functional
chains and scenarios, etc.) to express the expected
functional content – or if it is easier to express, the
functional content not present in this mode.

•A configuration intended to describe a state may be
structural dominant (hosting physical components,
physical links, indeed behavioral components hosted on
the former, etc.), but could also include functional
aspects, depending on the nature of the states considered
(for example attack or failure scenarios, from a security
viewpoint).

07:16

183

SCENARIO

• It is therefore necessary to define the combination of these
states and modes to be able to study their consequences. For
this, we will use the notion of a situation of superposition. A
situation is defined as a logical combination of modes and
states (for example (mode1 AND state1) OR (mode2 AND
(state2 OR state3)), which would express the superposition of
modes and states likely to occur at a given instant.

• A scenario can mention the transition from one situation of
superposition to another, in the same way as it will mention
changes of states and modes in the course of time.

07:16

184

EXAMPLE OF SITUATIONS

07:16

185

07:16

186

MEANING OF STATES AND MODES

OA describe either general situations that the organization considered confronts (usually
rather states such as routine conditions, states of crisis, a situation where there is a lack of
resources, for example), or the stages of a mission, or of the organization’s normal functioning
(usually rather modes, such as an airplane’s or space launcher’s stages of flight).

SA describing the expectation on the system, as desired by the customer; they are most often
perceived and employed by the final users. In particular, they capture the different modes and
conditions of use required of the system in different situations, and feared situations, with the
minimal behavior required when facing these situations

LA the system states and modes respond this time to design choices or constraints. New modes
and states reflecting the choices of solutions can appear, which cannot be linked to those of need
analysis.

PA applied to the system, but also to each logical architecture component and to the physical
architecture components linked to it: modes and states, as well as the content of their associated
configurations, should be coherent with traceability links (between functions, between
components, between exchanges triggering transitions, etc.) between both architecture
perspectives.

07:16

187

SUMMARY

• A mode is a behavior expected of the system, a component or also an actor or
operational entity, in some chosen conditions.

• A state is a behavior undergone by the system, a component, an actor or an
operational entity, in some conditions imposed by the environment.

• A transition is a change from one mode to another mode or from one state to
another state (respectively, called the transition source and transition target).

• A mode(s) machine (or respectively, state(s) machine) is a set of modes
(or, respectively, states) linked to one another by transitions. Modes and states
cannot cohabit in the same machine.

• A configuration is a set of model items that are globally available or
unavailable in a given context. A context can here be an active mode or state.

• A situation is a combination of states and modes linked by Boolean operators
(of the type AND, OR, NOT), and representing the conditions of superposition of
these states and modes simultaneously at a given instant.07:16

188

ADD-ON on test to aid State Analysis (VPMS)

07:16

189

PARAMETRIC VIA CLASS

07:16

190

•Capella provides advanced mechanisms for modeling data
structures at a stated level of precision and for linking
them to Functional Exchanges, Component or Function
Ports, Interfaces, etc.

07:16

191

• There are two main
categories of concepts in
this type of diagram:
• Communication

elements: EIs and
Interfaces;

• Type definitions: basic
Types, Classes, relations
between Classes.

• These two categories of
concepts are taken into
account in a division of
the CDB’s palette into
two different groups.

07:16

192

COMMUNICATION MECHANISMS

• EVENT: asynchronous mechanism where an event is sent
by an element and received by one or several others;

• FLOW: flow of matter, energy, etc. or data;

•OPERATION: process carried out by an element and
invoked by another;

• SHARED DATA: data modified by an element and read by
others.

07:16

193

TYPES

•We shall look now at the definitions of the Types
proposed by Capella: Classes, Structured Types, Simple
Types. The vocabulary used comes from UML, and the
very name of the “Class diagram” is a direct reference to
it.

07:16

194

• The simple Types predefined by Capella are as
follows: BooleanType, Enumeration,
NumericType, StringType and PhysicalQuantity.

• Careful, BooleanLiteral and EnumerationLiteral
help define Boolean Type and Enumeration, while
Unit helps to define PhysicalQuantity.

• Simple types cannot have properties. If we want
to define Structured Types, the Class button in the
palette must be used, and then the Class must be
specified as primitive (tick the box Is Primitive).
The other “Primitive” Classes then play the role of
structured Types, and can in turn type the
properties of the “true” Classes.

07:16

195

07:16

196

Ending

07:16

197

• It must be noted that the method does not always have to
be top down in nature, but can also perfectly be bottom-
up, for example if we start with an existing system that is
to be worked on. The question relates more to
architectural levels than to phases or steps.

•Moreover, not all architectural levels are mandatory for all
projects. Operational Analysis, Logical Architecture and
EPBS are considered to be optional, depending on the
complexity of the system under study and the goals of the
model.

07:16

198

BACKUP

07:16

199

WHAT IS SYSML?

07:16

200

HISTORY OF OBJECT ORIENTED LANGUAGES

SysML 1.4

07:16

201

UML –
UNIFIED
MODELLING
LANGUAGE

07:16

202

ADAPTATION OF UML TO SYSTEMIC DOMAIN

07:16

203

SysML – SYSTEM MODELLING LANGUAGE

07:16

204

SysML DIAGRAM BRANCHES

07:16

205

SysML

• Is a visual modelling language that provides
• Semantics = meaning
• Notation = representation of meaning

• Is not
• a methodology or a tool
• SysML is methodology and tool independent

07:16

206

Transition from OPM to SysML
Creating SysML Views from an OPM Model

07:16

207

OPM to SysML Mapping Challenge

• The mapping is “one-to-many”

• Example – a Process in OPM can be mapped in SysML to
one of the following:
• Use Case (in a Use Case Diagram)
• Operation of a block (in a Block Definition Diagram)
• Action (in an Activity Diagram)
• State transition trigger or in-state activity (in a State Machine

Diagram)
• Message (in a Sequence Diagram)

07:16

208

OPM-to-SysML IMPLEMENTATION - USE CASE
EXAMPLE

07:16

209

ACTIVITY/SEQUENCE DIAGRAM EXAMPLE

act Anti Locking [Anti Locking]

ActivityFinal

Pulse Set

Generating

Wheel Lock

Detecting

Signal Processing

Signal Conv erting

ActivityInitial

[Wheel Lock Is Detected? is yes] [else]

07:16

210

STATE MACHINE DIAGRAM EXAMPLE

stm StateMachines [Status of Order]

ordered

paid

supplied

completed(Order Supplying)

completed(Order Paying)

07:16

211

REQUIREMENTS

07:16

212

SysML & ARCADIA
https://polarsys.org/capella/arcadia_capella_sysml_tool.html

07:16

213

SysML Arcadia/Capella

Positioning

SysML is a standard and a general-purpose
modeling language for modeling systems.
SysML provides very rich and advanced
expression means covering a very broad
spectrum of applications, spanning from
high-level architecture modeling to
detailed design at the frontier of
simulation.

Inspired by SysML concepts, the Arcadia/Capella
solution focuses on the design of systems architectures.
For the sake of an easier learning curve and because of
the precise scope addressed by Arcadia/Capella, the
expression means are sometimes reduced compared to
SysML. The ultimate goal of Arcadia/Capella is to have
systems engineers embrace the cultural change of
MBSE rather than having modeling “experts” owning
the model on behalf of systems engineers. Therefore,
Arcadia/Capella are strongly driven by the current
practices and concerns of system engineering
practitioners.

Method

SysML is not associated to a particular
method even though several engineering
methods can be followed. As such, SysML
only provides a vocabulary, but it does not
specify when to use one concept or
another, how to organize models, etc.

The Arcadia method enforces an approach structured
on different engineering perspectives establishing a
clear separation between system context and need
modeling (operational need analysis and system need
analysis) and solution modeling (logical and physical
architectures), in accordance with the IEEE 1220
standard and covering parts of ISO/IEC/IEEE 15288.07:16

214

SysML Arcadia/Capella

Language

Technically, the SysML language itself is
defined as an extension of the Unified
Modeling Language (UML). Both UML and
SysML are general-purpose languages
targeting wide spectrums of engineering
domains and are relying on software-
originated engineering paradigms using
types, inheritance, etc.

The Arcadia concepts are mostly similar to the
UML/SysML standard (about 75%) and the NATO
Architecture Framework (NAF) standard (5%).
Interoperability with SysML tools is possible using ad-
hoc imports/exports. Because of the focus on
architectural design, some of the SysML concepts have
been simplified or specialized in order to better match
the concepts system engineering practitioners already
use in their engineering documents and assets. This is
the case of the concepts related to functional analysis
for instance.

Diagrams

SysML includes diagrams inherited from
UML2 and adds new diagrams:
• 4 diagrams are the same as UML2

diagrams (Sequence, State Machine,
Use Case and Package);

• 3 diagrams are extensions of UML2
diagrams (Activity, Block definition and
Internal Block);

• 2 diagrams are new diagram types
(Requirement and Parametric).

Arcadia method is supported by various kinds of
diagrams largely inspired by UML and SysML:
• Architecture diagrams;
• Dataflows diagrams;
• Functional chains diagrams;
• Sequence diagrams;
• Tree diagrams;
• Mode and States diagrams;
• Classes and Interfaces diagrams.07:16

215

07:16

216

Similarities and equivalences

07:16

217

Block Definition Diagram

07:16

218

Internal Block Diagram

07:16

219

Activity Diagram

07:16

220

Sequence Diagram

07:16

221

State Machine Diagram

07:16

222

Use Case Diagram

07:16

223

Requirement Diagram

07:16

224

Class Diagrams

07:16

225

Parametric Diagrams

07:16

226

Differences

07:16

227

Functional Analysis

• Functional analysis is a classical technique broadly used
by systems engineers. Arcadia and Capella provide
methodological guidance and engineering helpers to
support this technique that has been mostly left out of
SysML V1.
• The mapping of Capella functions to SysML activity is the

most natural one in terms of semantics. Capella functions
are verbs specifying the actions expected from the
component they are allocated to. This section describes
the structural differences between SysML
activities/actions and Capella functions.07:16

228

07:16

229

Integration Functions / Components / Interfaces

07:16

230

07:16

231

Management of "instances", or "definitions and
usages"

07:16

232

07:16

233

07:16

234

REQUIREMENTS IN CAPELLA

07:16

235

[IF NOT INSTALLED] ADD THE REQ ADDON

07:16

236

[IF NOT INSTALLED] UNZIP IN DROPIN FOLDER

07:16

237

[IF NOT INSTALLED] Last Steps

• Start Capella

• Open the Viewpoint Manager view
using Window menu then Show View
and Other...

• Select Viewpoint Manager in Kitalpha
directory and press OK

• The Viewpoint Manager view is
displayed

• The viewpoints available in the
platform are listed in this view.

• If using Capella version < 1.0.x
• Right-click on the name of a viewpoint

and select Start in order to start the
viewpoint

• If using Capella version > 1.0.x
• Select any model element (diagram

element, element in the project
explorer) related to your project

• Right-click on the name of a viewpoint
and select Reference in order to start
the viewpoint

07:16

238

CAN BE USED IN MULTIPLE LAYER

•Operational Analysis Requirements

• System Analysis Requirements

• Logical Architecture Requirements

•Physical Architecture Requirements

• EPBS Architecture Requirements

07:16

239

ADD A CAPELLA MODULE IN THE LAYER

07:16

240

CREATE A REQUIREMENT FOLDER &
REQUIREMENT

The only way to create requirements is through the Project Explorer.
[good side] Capella connects to Doors ($$$) to import requirements.

07:16

241

REQUIREMENTS CAN BE USED IN ANY VIEW

07:16

242

SELECT THE REQUIREMENTS THAT WANT TO USE
IN THE VIEW.

07:16

243

ADD A LINK / CHECK RELATIONS

07:16

244

REQUIREMENT TREES

07:16

245

ADD REQUIREMENT METADATA

• It is required to create a new Type

•Create a Capella Types Folder → Rename Req Types

07:16

246

Requirement Data Type Definitions

• IE PUID (Requirement ID – name comes from DOORS)

• IE Rationale

• IE Verification Text

• IE Verification Method Expected

• IE Requirement Status

• IE Sign off Org

• IE Responsible Org
07:16

247

• aql:OrderedSet{self.ownedAttributes->select(a |
a.definition.ReqIFLongName == 'IE PUID').value,
OrderedSet{self.ReqIFLongName, self.ReqIFText,
self.ReqIFChapterName}->select(s | s != 'null' and s.size()
> 0)->add(OrderedSet{''})->first()}->sep(' ')

Annotation Query Language (AQL)

07:16

248

https://www.ibm.com/support/knowledgecenter/en/SSPT3X_4.2.5/com.ibm.swg.im.infosphere.biginsights.aqlref.doc/doc/aql-overview.html

Create the Requirement Type that include the
Data types as Attributes

07:16

249

CONFIGURE THE ATTRIBUTE

07:16

250

ADD RELATION METADATA

07:16

251

Apply to the Requirement Set

07:16

252

CREATING THE ATTRIBUTES

07:16

253

EACH LAYER HAS A “DEFAULT” REQ RELATION
TABLE
• Operational:

• Activities X Requirements

• System:
• System Function X Requirements

• Logical
• Logical Functions x Requirements
• Logical Component x Requirements
• Logical Architecture Requirement Refinements

• Physical
• Physical Functions x Requirements
• Physical Component x Requirements

• EPBS
• Configuration Itens x Requirements
• EPBS Requirement Refinements

07:16

254

EVERYTHING IS WRITTEN IN XMI

07:16

255

Replicable Elements Collection
(REC) e Replicas (RPL)
Written by Mateus S. Venturini

07:16

256

Definition

07:16

257

REC

REC

RPL

RPL

EXAMPLES

07:16

258

07:16

259

CREATING

07:16

260

Right Click

Select the components to replicate

USING

07:16

261

UPDATE REC from the RPL

07:16

262

Update RPL from the REC

07:16

263

REFERENCES OF THE REC->RPL

• [HOW TO] Replicate model elements in Capella (4’25’’)
• https://www.youtube.com/watch?v=h-ax61eVlxM

• Webinar - Strategies and tools for model reuse with
Capella (58’23’’)
• https://www.youtube.com/watch?v=I28EhAXe-i8

• In-Flight Entertainment System (IFE) – Example
• https://download.eclipse.org/capella/samples/1.3.1/InFlightEn

tertainmentSystem.zip

• Capella Help – Replicable Elements
07:16

264

