ST

‘\%\1 L!‘F/

ARCADIA PRIMER

[MBSE][LEC-007]

SUMMARY

a

REVIEW OF OUR APPROACH

e
OUR APPROACH: OPM & ARCADIA HYBRID

CONCEPT MODELLING ARCHITECTURE MODELLING

. Analysis —

pvev N, S ey
=v=/ #

ARCADIA

11111111

Z’i The start:

=

How do we explain ideas to each other?

—

/ Grab a pen and piece of paper, or a chalk and
blackboard

"=~ While talking, run lines with or without arrows among
the shapes
AR Follow the reaction of the audience to see if idea is
a2l nderstood

(I

The Start:

conceived reality modeled reality
Object

. o is a
CTETETL oos2 | ;
. Py

Concept
. f @
concise MOdEIS ‘

affects
Process -

fragmented knowledge
into explicit and
integrated knowledge

e

models

e

* simple yet expressive, and
* intuitive yet formal

The model to stakeholders

07:16

hed 4
& |
= y To——g
YR
i
A
N
<>
T
.
s

* We are able to discuss conceptual decisions
* Do a fast state-machine simulation
* |[dentify needs and some stakeholders
* Identify main system elements to propose a CONOPs

* Proposal is to be a formal language that enables to capture a
fairly amount of information to understand how the system
will work.

* We could go from need to screw = but the method will get
confused and lacks more capabilities when the complexity is
o716 “heavily” increased. (my opinion)

“* Evolving:
&% How can we construct the architecture?

* Analyzing stakeholders' necessities

* Analyzing the system functions that interact within the
stakeholder’s necessities

* Creating a logical decomposition
* Creating a physical decomposition

* Distributing to the supply chain / development
organizations

07:16

07:16

Need understanding

c
20
v
]
-
™
-
S5
C—
&)
)
N
=
()
—_
3
c
2
e
=
0
7]

- .- - -

B

A : Operational activity
F: Function
C: Component

Operational Analysis
What the users of
the system need to
accomplish

Functional &

Non Functional Need
What the system has to
accomplish for the users

Logical Architecture
How the system will work
to fulfill expectations

Physical Architecture
How the system will be
developed and built

ARCADIA METHOD

REF-006: VOIRIN, J.L. Model-based System and Architecture Engineering with the
Arcadia Method. Elsevier, 2017. ISBN 978-0-0810-1794-4.

REF-007: ROQUES, P. Systems Architecture Modeling with the Arcadia Method — A
Practical Guide to Capella. Elsevier, 2017. ISBN: 978-0-0810-1792-0

07:16

10

%4? * System engineers have been making use of modeling techniques
-#~ for a long time. Structured analysis and design technique (SADT)
and structured analysis for real time (SA/RT) are some of the best
known of these, and date back to the 1980s. There are many other
approaches based on Petri nets or finite state machines. However,
these techniques are also limited by their range and expressivity, as
well as by the difficulty in integrating them with other formalisms
and with requirements.

* An interesting attempt was the publication of a UML variant for
system engineering in 2006—-2007. This new language, called
SysML, was strongly inspired by version 2 of UML, but added the
possibility of representing system reqwrements non-software
elements (mechanical, hydraulic, sensors, etc{ phy5|cal equations,
continuous flows (matter energy, etc and allocations.

07:16

11

* This is the reason that led Thales to define the Arcadia
= method, along with its underlying formalism, for its own
needs.

It has been applied since 2011 in a growing number of
projects across a great variety of domains (avionics,
railway systems, defense systems in all fields, air traffic
control, command control, area surveillance, complex
sensor systems, satellite systems and ground stations,
communications systems, etc.), and in many countries
(France, Germany, United Kingdom, Italy, Australia,

Canada, etc.).

07:16

12

Specialty
engineering:
safety, perf,
secunty, ...

07:16 Solution Architecture

13

+
7, CEI '\
C T

07:16

14

Founding principles

* all of the engineering stakeholders share the
and the
product in the form of a shared model;

 each specialized type of engineerinF (for example security,
performance, cost and mass) is formalized as a “viewpoint” in
relation to the requirements from which the proposed architecture
is then verified;

* the rules for the anticipated verification of the architecture are
established in order to verify the architecture as soon as possible;

* co-engineering between the different levels of engineering is
supported by the joint elaboration of models, and the models of
the different levels and specialties are deducted/validated/linked
one to the other.

07:16

15

NEED

(%2}
z
o
-
=
-
O
w

METHOD STEPS

Customer
Operational

TASKS

+ Define operational
capabilities

Need AnaIYSis + Performan

System/
SW/HW

Need Analysis

Logical
Architecture
Design

Physical
Architecture
Design

Development
Contracts

operational need
analysis

+ Perform a capability
trade-off analysis

« Perform a functional
and non-functional
analysis

+ Formalise and
consolidate
requirements

+ Define architecture
drivers and viewpoints

+ Build candidate
architectural
breakdowns in
components

+ Select best compromise
architecture

+ Define architectural
patterns

« Consider reuse of existing

assets design a physical

« Design a physical
reference architecture

« Validate and check it

+ Define a components
IVVQ strategy

+ Define & enforce a
PBS and component
integration contract

SAMPLE MODEL

BROADCASTING STATION

{ Elaborate Radio Programs |

2

Radio contents

2
 ENVIRONMENT

News Radio channel

Broadcast Radio channels

|
L

Music Radio channel

1
USER

! Getnews

[
P| Listen to Music

Selectradio |2
station

Fréquency |

Station

Volume

signal

EM w.wes’[Receive radio

| Radiosi Play radio
contents

—HZMZTZOD®—<Zm b

Audio sound

Radio name

Frequency tuning

[

y
H Select radio frequency |9

r g Radig

Select

|[Receive racsosignal | \

EM

ENVIRONMENT &

'i Extract radio RDS

Display radio name

MICRO CONTROLLER

=
[osermrenmace | L]
[Ehcoaianleznnionisl
(o]
HF Recelver MAIN RACK D
e [Sr—
Demodulator e
= e |
[ceuna
Vohcable
RS 232 cable
Discrete /O
“~ RCA cable

USER &

CONCEPTS

- Operational capabilities

- Actors, operational entities

- Actor activities

- Interactions between activities & actors

- Information used in activities &
interactions

- Operational processes chaining
activities

- Scenarios for dynamic behaviour

- Actors and system, capabilities

- Functions of system & actors

- Dataflow exchanges between functions

- Functional chains traversing dataflow

- Information used in functions &
exchanges, data model

- Scenarios for dynamic behaviour

- Modes & states

SAME CONCEPTS, PLUS :

- Components

- Component ports and interfaces
- Exchanges between components

- Function allocation to components
- Component interface justification by
functional exchanges allocation

SAME CONCEPTS, PLUS :

- Behavioural components refining
logical ones, and implementing
functional behaviour

- Implementation components
supplying resources for behavioural
components

- Physical links between
implementation components

- Configuration items tree

- Parts numbers, quantities

- Development contract (expected
behaviour, interfaces, scenarios,
resource consumption, non-functional
properties...)

of dataflows to interfaces, of
elements to configuration items

DESCRIPTION MEANS
Dataflow: functions, op.
— [[~I—} activities interactions &
. [} exchanges
/— |
Scenarios: m m m l—‘ m
actors, system, —
components interactions ASm— pro—
& exchanges - >
Ao ——— [—
[:l:, l Functional chains,
% operational processes
i~ through functions &

op. activities

Modes & states
of actors, system,
components
Breakdown of functions
& components
sounopRoRLE TUNNGVALUE
Data model: dataflow @@ TREBBLELEVEL s FREQUENCY BAND
: =
& scenario contents, W2 SR il
definition & justification of NG
interfaces FuTRALLE

Component wiring:
all kinds of components

Allocation

of op.activities to actors,

of functions to components,
of behav.components

to impl.components,

ARCADIA OPERATIONAL ANALYSIS

Data Operational Analysis
= = I

g o6
£ S
§ i
7 | ' / d Analysis

! S - - ,
'§ '...‘ :‘_.- ' e T - ik ystem Nee alys
Z2 "-.‘ s *_‘R:-ﬂs-r;" :_qoata ‘

I it

a2 !

v H

! \

Ry < Logical Architecture
§ -
8
a
g
3
g
E Physical Architecture
<
&
E; Building Strategy

07:16

17

ARCADIA OPERATIONAL
CONCEPTS:

* Operational Capability: capability of an organization to
provide a high-level service leading to an operational
objective being reached (for example Provide weather
forecasts, etc.); - high-level objectives

\’ oge @
? o a2 -ilities, ..,
t@ O MAINTAINABILITY
\~ SCALABILITY
/)\o ﬁ)) N YR
07:16 J \o o/ \Q o/ \o o/ \ VULNERABILITY

19

7

* Operational Entity: entity belonging to the real world
(organization, existing system, etc.) whose role is to
interact with the system being studied or with its users
(for example Crew, Ship, etc.);

W "o e

07:16

20

* Operational Actor: particular case of a (human) non-
decomposable operational entity (for example Pilot,
etc.);

= -

21

* Operational Activity: process step carried out in order to
reach a precise objective by an operational entity, which

might need to use the future system in order to do so (for
example Detect a threat, Collect meteorological data,

etc.);

* Operational Interaction: exchange of information or of
unidirectional matter between operational activities (for
example meteorological data, etc.);

07:16

23

* Operational Process: series of activities and of

interactions that contribute toward an operational
capability.

QAL L

07:16

24

* Operational Scenario:

representing time.

scenario that describes the
behavior of entities and and/or operational activities in

the context of an operational capability. /t is commonly
represented as a sequence diagram, with the vertical axis

eeeeeeee

eeeeeeeeee

dddddddddddddd

dddddddddddddd

Operational has Operational
Capability

Activity

Operational Interaction

lhas

is handle Operational Operational Process
Entity

omposed by
Operational

User

|

Operational
0716 Scenarios

26

Put into a

Raw Food

Produce a
Meal

Buy food Turn on the
fire

—

Produce a Meal Process

is handle Kitchen

omposed by

—~
1st you have to buy food

07:16 2nd put (the raw food) into a pan

27 3rd with the raw food into a pan turn on the fire

WHAT IS IN THE OPERATIONAL
ANALYSIS (OA)

e
>4 Operational Analysis

“What system users must achieve”
“What the users of the system need to accomplish”

* This perspective analyses the issue of operational users,
by identifying actors that have to interact with the system,
their goals, activities, constraints and the interaction
conditions between them.

* Analysis of the issues of operational users by identifying
the actors that must interact with the system, their
o gctivities and their interactions with each other.

29

%8« trying to best satisfy a customer need, without having an
imposed system scope

* OA should not mention the system, so as not to bar itself
from potentially interesting alternatives for achieving the
satisfaction of customer needs: it aims at understanding
this need without any a priori assumptions about how the
system will contribute thereto; this is to not restrict the
scope of possibilities too quickly.

30

~# ¢« EXAMPLE.— Suppose that the customer need
4 isto be able to hang a mirror on a wall.

If this need is translated too quickly into “how
to attach a dowel to the wall with a drill?”

*this prematurely excludes other possibilities
(such as using glue, for example),

* and also criteria that would help guiding the
process toward the right solution (such as
the need or not to be able to disassemble

-1 the mirror at a later time).

31

“" Define Missions and Required Operational
A Capabilities

* The first step consists of determining future system and
environment users’ missions — or more generally:

* their motivations, expectations, goals, objectives, intentions, etc.,
as well as the capabilities required to assume these missions.

* Existing constraints on the execution of the mission must also
be identified at all levels likely to impact it:

e actor skills, operating modes and responsibilities, rules and
associated procedures, existing means and systems, regulatory
07116 constraints, temporal and programmatic aspects, etc.

32

 The goal is to capture the conditions for the completion

of a mission previously identified, and those for the
implementation of associated capabilities, mainly through the
algtivities and interactions of the key players that contribute
thereto.

* The various situations that directly shape and influence the
missions, nominal or non-nominal, and the worst cases likely to
be met, should be formalized. The analysis and the comparison -
of situations and conditions of missions must constitute a
permanent concern; in fact, they are likely to guide both the
needs analysis, to develop it by revealing constraints likely to
have a high impact, but also the opportunities for development
of processes, the principles behind the implementation of the
mission, etc.

- The different situations encountered during the
mission are formalized in the form of scenarios that

specify conditions for the implementation of the
required capabilities and the contributions of each stakeholder
(actors, activities, interactions, etc.), as well as operational

07:16 processes that implement activities contributing to a capability
or part of the mission.

33

{c} Minimize noise Road vehicles,

etc.
% Site user e Limit excessive
heat and cold
@ Circulate .
DMl Road traffic noise :r % Envivonmment
@ Works < D=8 Heat or cold ..-"'. {
< Light S
@ Heats or
cools
< D= Road traffic noise
[(D= Cold
Sleeps or -
@ rest g D Light
D= inside vision B @ Is bright
% Bystander or
intruder :
Protects _
him/herself T % Seeks to
@ s = D=2 Attempted intrusion .1 @ see inside
intrusions T, the place
© Hide on
Enters or Seeks to request
@ leaves the @ enter the
place place
07:16

34

OPERATIONAL DIAGRAMS

Describe the state machine of the system,
specifying which are its modes and states. Among
others, state machines can be created on the
following kinds of elements: system,
components, actors, classes (data), etc.

Identify the operational domain: who are the
actors and entities, which are their purposes?

[OEDB] Activities give a global view upon the operational
Operational business goals.

Entity
Describe the domain elements and the actually Breakdown
exchanged data. [OE$] [OCB]
+ Domain Elements: modeling elements of the Operational Operational
domain should not be "polluted" by technical Entity Capability
considerations (e.g.: internal representationof Scenario Diagram

data, database storage, access methods, etc.).
In the beginning, concentrate only on
elements that provide high-level semantic
related to the domain.

* Data actually exchanged between
components: used for example to type
parameters in interface operations. These data [ORB] Oberational [OAB.D]
have to be unambiguousand consistent. Operational P : Oper&?tl-onal

_ Role Diagram Analysis Activity

Both the domain elements and actual data are Breakdown

described in a Class diagram.

[OAIB]
[OAI.B] Operational
Operational Activit
Architecture Interacti\c/Jn
Operational actors and entities are responsible for DUZEE i [OAS] Diagram

performing the operational activities. Manage allocations

o " Operational
and deduce communication means between entities. o . . L.
07:16 Activity Detail the operational activity breakdown,

Scenario describe the interactions between entities

Create Scenarios to illustrate interactions between the .
and model the operational processes

opergional actors and entities

STEP BY STEP EXAMPLE

[OEDB| Operational Entity Breakdown

= workspace - platform:/resource/teste/teste.aird/[OEBD] Operational Context - Capella - x
File Edit Diagram Mavigate Search Project Run Window Help
H-EHRAA G- [Quick Access] || g5 |2
T+ Capella Project Explarer i3 = 8 % “teste & “[OEBD] Operational Co... £% | & *[QOCB] Operational Cap... & “[OAIB] Root Operation... & “[OABD] Root Operation... &, *[OAS] Scenario & *[OAB] Operational Con... & *[ORB] Operational Con... &, *|OES] Scenario & “[CSA] System = B8
B ~ (BB~ FH| D~ m &~ B¢ 214% | @@ % Palette S
keaD-X-
(= Entities %

Select a name to find
T = any character, * = any string
Operational Entity
& Operational Actor
& Contained In

|Ext

v [teste
v [*teste.ird
~ i teste
7} Operational Analysis = Common
~ i} System Analysis
v [System Functions
w (@) Root System Func
® |d:,’|tifya Gho "%, Constraints
@ Call for Help + %, Applied Property Value Groups
& Clean Mess
@ Reopen
v (= Capabilities z
@ Eamn Money Club
@@ Have no Ghost
@ Have fun
= Interfaces
(= Data
%8, System Context
£ System
v (= Actors
& Owner
% Clients
£ Club
(= Missions
£ Logical Architecture
F Physical Architecture
1 EPBS Architecture
(= Representations per category
Owner Clients

[testeaf .

{c} Constraint

% ConstraintElement

A Fast Linker 33

(8 Viewpoint Manager 53

07:16 _ =

Project teste
- Version State

Unreferenced
| 173M of 1060M U:

MName
ninz2

(T Canella Reauirements

o testerteste:Operational Analysis:Operational Context

[OCB] Operational Capability Diagram

= workspace - platform:/resource/teste/teste.aird/[OCB] Operational Capabilities - Capella - x

File Edit Diagram MNavigate Search Project Run Window Help

e E QA oD [Quick Access] | g5 | (2

T+ Capella Project Explarer i3 = 8 % teste & [OCB] Operational Capabilities i1 | & [OAIB] Root Operational Activity & [OABD] Root Operational Activity & [OAS] Scenario & [OAB] Operational Context & [ORB] Operational Context 2, [OES] Scenario & [CSA] System = B8
-

== BB S| DrwrEmet & B 5% | 3 Pelette b
Select a name to find lz B)N~
T = any character, * = any string & 5
a,
t L&
|Ex | ~ 40E] Operational Entity
v = E“e -~ & Operational Actor
v teste.aird
v & teste & Operational Capability
 Operational Analysis D=1 CommunicationMean
~ i} System Analysis Earn Money Have fun =¥ Involvement
v [System Functions £3 Extends
w (& Root System Func :
@ Identify a Gho - 3 Includes
@ Call for Help —P Operational Capability
& Clean Mess : Generalization
@& Reopen i “w, Operational Actors
v (&= Capabilities " “w, Operational Capabilities
@ Eam Money g
@ Hove no Ghost “w, Operational Entities
@ Have fun = ' &, Relationships
(= Interfaces (= Common &
& Data {c} Constraint
%8, System Context
1] System -3 ConstraintElement
v &= Actors Have no Ghost %, Constraints
& Owner
: Applied P Value G
3 Clents % G % Clients + Y&, Applied Property Value Groups
£ Club
(= Missions
£ Logical Architecture
F Physical Architecture
B EPBS Architecture Report Problems
(= Representations per category
[testeaf .
< >
A Fast Linker 33 =08
Prope: i er [l ements [Viewpaint Manager 53 4 | M= 0
Project teste
MName - Version State
39 A Canella Renuirements 002 Unreferenced

(> testeuteste:Operational Analysis:Operational Capabilities 228M of 1060M U:

07:16

40

[OAIB] Operational Activity Interaction Diagram

= workspace - platform:/resource/teste/teste.aird/[OAIB] Root Operational Activity - Capella

File Edit Diagram MNavigate Search Project Run Window Help

H-BRiv-ierD -

“Capella Project Explorer 51 = B R “teste
P i P! D
=

BS v sBrEiv|
Select a name to find
T = any character, * = any string
|Ext | O, &

v [teste
v [*teste.ird
~ i teste
f# Operational Analysis
~ i} System Analysis
v [System Functions
w (& Root System Func
@ Identify a Ghot
@ Call for Help
& Clean Mess
@ Reopen
v (= Capabilities
@ Eamn Money
@@ Have no Ghost
@ Have fun
= Interfaces
(= Data
%8, System Context
£ System
v (= Actors
& Owner
% Clients
£ Club
(= Missions
£ Logical Architecture
F Physical Architecture
1 EPBS Architecture
(= Representations per category

[testeaf .

A Fast Linker 33

& “[OAIB] Root Operational Activity &1 | & *[OABD] Root Operational Actit

v mot| s @]

") Identify a Ghost

2 131% | m

@") Call for Help

D=8 ghost on club

ity &, *[OAS] Scenario

&, *|OES] Scenario & “[CSA] System

& “[ORB] Operational Context

& “[OAB] Operational Context

@) Clean Mess {©F) Reopen

D=l club clean

D=8 ghost catched

- x
ke | 5 |2
= 8
. Palette [
lz B)N~
= Activities %

Operational Activity
D= Interaction
“w, Operational Activities
W, Interactions
“®, Operational Process
= Accelerators Lol
(e Activities from Mode / State
[l Elements from Scenario
%, Operational Process Elements
(= Common 0
{c} Constraint
- ConstraintElement
“w, Constraints
+ w, Applied Property Value Groups

i 23 - (8 Viewpoint Manager 53 4 | M= 0
Project teste
MName - Version State
A Canella Renuirements 002 Unreferenced
346M of 1060M ([T

testestesteOperational Analysis::Operational Activities:Root Operational Activity

= workspace - platform:/resource/teste/teste.aird/[OABD] Root Operational Activity - Capella
Window Help

File Edit Diagram MNavigate Search Project Run

N-BR & ~iE -
& “[OABD] Root Operational Activity 2 & *[0AS] Scenario & “[OAB] Operational Context

T2 “Capella Project Explorer 37 = B R “teste
v g[S O ur|lemd s @@ @fox |

Select a name to find
T = any character, * = any string

|Ext

v [teste

& “[ORB] Operational Context

&, *[OES] Scenario

& *[CSA] System

[OABD]| Operational Activity Breakdown

v [*teste.ird
~ i teste
f# Operational Analysis
~ i} System Analysis
v [System Functions
w (& Root System Func
@ Identify a Ghot
@ Call for Help

o |dentify Call for
® Reopen DR 0R
@ a Ghost @ Help

v (= Capabilities
@ Eamn Money
@@ Have no Ghost
@ Have fun
= Interfaces

@ Clean

Mess

Reopen

(= Data
%8, System Context
£ System
v (= Actors
& Owner
% Clients
£ Club
(= Missions
£ Logical Architecture
F Physical Architecture
1 EPBS Architecture
(= Representations per category
[testeaf .

A Fast Linker 33

- X
[| |2

= g
. Palette [

1N

28

[@
= Activities %
Operational Activity
& Contained In
W

(= Common
{c} Constraint
% ConstraintElement
&, Constraints
+ “w, Applied Property Value Groups

07 ’ 16 i x4 = (8 Viewpoint Manager 53 | =
Project teste
MName - Version State
A Canella Renuirements 002 Unreferenced
3910 of 1060M [T

testestesteOperational Analysis::Operational Activities:Root Operational Activity

[OAS] Operational Activity Scenario

= workspace - platform:/resource/teste/teste.aird/[OAS] Scenario - Capella - x
File Edit Diagram MNavigate Search Project Run Window Help
N BRI i D [ouck e | 5 |2
Ta *Capella Project Explorer 532 = 8 %2, “teste & *[OAB] Operational Context & *[ORB] Operational Context & *[OES] Scenario & *[CSA] System &, °[OAS] Scenario £% = 8
BS ¥ W& (S| ODrwr | met | & G 150% | m {3 Palette >
= B8, L el
Select a name to find Identify a Ghost Call for Help Clean Mess Reopen h [CRCE R .
7= haracter, * = t
any character any =tring = Scenario Elements %
t €
|Ex | Rl Activity
v iz E“e X W, Activities
*teste.aird
h éie i‘r — Interaction
w este
. i —
i Operational Analysis _i) Identify a _i) Call for Help _i) Gl [ess _i) Reopen = Interaction with return branch
v £ System Analysis Ghost B Reference
v [System Functions T T T T R LoOP
w (& Root System Func
@ Identify a Ghot [ghost on club [[[|1 Operand
@ Call for Help : [[", State / Mode
& Clean Mess | U | | T Duration
@ Reopen ! ! ! %W, Exchange Context
v (= Capabilities | | ghOSt catched | | -
@ Eam Money | | | (= Common i
@ Have no Ghast | | | {C} Constraint
- ‘@: ';EVE fun I I I ~3 ConstraintElementScenario
nterfaces
= Data | | | club clean | “w, Constraints
%8, System Context : : : + w, Applied Property Value Groups
£ System
v (= Actors | | | |
& Owner [[[[
% Clients | | | |
£ Club | | | |
(= Missions | | | |
£} Logical Architecture | | | |
F Physical Architecture | | | |
1 EPBS Architecture
(= Representations per category I I I I
| | | |
[testeaf .
| | | |
< >
| | | |
A Fast Linker 33 =08 [[[[
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
Prope: i a 325 er [l ements [Viewpaint Manager 53 4 | M= 0
Project teste
MName - Version State
42 A Canella Renuirements 002 Unreferenced

[testerteste:Operational Analysis:Operational Capabilities::Have no Ghost:Scenario] 458M of 1062M U:

= workspace - platform:/resource/teste/teste.aird/[ORB] Operational Context - Capella

File Edit Diagram MNavigate Search Project

- P i D
s Capella Project Explorer 52 = 8
les ~

Select a name to find
T = any character, * = any string

[ext o &

v [teste A

v [2 testeaird
~) teste
f# Operational Analysis
~ i} System Analysis
v [System Functions
w (& Root System Func
@ Identify a Ghot
@ Call for Help
& Clean Mess
@ Reopen
v (= Capabilities
@ Eamn Money
@@ Have no Ghost
@ Have fun
= Interfaces
(= Data
%8, System Context
£ System
v (= Actors
& Owner
% Clients
£ Club
(= Missions
£ Logical Architecture
F Physical Architecture
1 EPBS Architecture
(= Representations per category
[testeaf

A Fast Linker 33 -

07:16

43

Run Window Help

%2, teste & [OAB] Operational Context

Br&v|S|Dwr|m A B

Project teste

& [ORB] Operational Context (% | & [OES] Scenario

22% | m@

& [CSA] System

@ Manager

@ Call for

Help

[ORB] Operational Role Diagram

—— 3 ghost catched

@ Reopen

club clean

@ Cleaner

> @ Clean
| — Mess

ements [Viewpaint Manager 53

- x
[auck e |12
= 8
. Palette [
eam-Nr-
= Roles %

@ Operational Role
“w, Operational Roles
= Activities %
Operational Activity
D= Interaction
“, Interactions
& Manage Activity Allocation
s, Allocated Activities
&, All Allocated Activities
= Common el
{c} Constraint
- ConstraintElement
“w, Constraints
+ w, Applied Property Value Groups

MName

Version
ninz2

State

Unreferenced

(T Canella Reauirements

358M of 1046M

a:

[OAB] Operational Architecture Diagram

= workspace - platform:/resource/teste/teste.aird/[OAB] Operational Context - Capella - x

File Edit Diagram MNavigate Search Project Run Window Help

N BRI E ke | 5 |2

Ta *Capella Project Explorer 532 = 8 2, “teste & “[OAB] Operational Context &1 | & *[ORB] Operational Context & *[OES] Scenario & *[CSA] System = B8
8BS - BB~ $| D w-(wme| a6~ e | m i Palette b
Select a name to find PCRCN -\ -
T = any character, * = any string & Entit @
= Entities
t €
|Ex | o Operational Entity
v = ESYIE 2 & Operational Actor
v *teste.aird
- G teste Club DAl Communication Mean
I Operaticnal Analysis . + 8, Operational Actors
~ i} System Analysis % Owner % Clients + & Communication Means
v [System Functions & Roles @
w (& Root System Func @ M
i . anager 5 ® Role
@ Identify a Ghot g Identlfy
@& Call for Help - ﬁlllll [&] Manage Role Allocation
@ Clean Mess T | a Ghost “&_All Allocated Roles
@ Reopen Call for ghost on club
© (= Capabilities @ Lel “s, Allocated Roles
@ Eamn Money elp (= Activities 0
> Haveno Ghost Operational Activity
@ Have fun
(= Interfaces Repary Problems DA Interaction
(= Data] Manage Activity Allocation
%8, System Context s, Interactions
. g i:’;i:: (Dﬂ) REOpEﬂ “w, Operational Processes
% Owner ", Allocated Activities
% Clients m ghO t catched , ‘S‘A\\A.Iln(atad Activities in
% Club ’ Entities
(& Missions [Acceleratars k)
Ls | Architect:
o ogical Architecture lDﬂ club Clﬁé\ (¥ Activities from Mode / State
F Physical Architecture
H EPBS Architecture @ leEmEs [FH Elements from Scenario
(= Representations per category = Comman @0
B testeaf v {c} Constraint
3 % - ConstraintElement
A Fast Linker 3 *= 08 El‘ln Clean ", Constraints
Mess + w_ Applied Property Value Groups

07:16
operties nformation %3 Bro e 2 | M= 8

sirements [Viewpoint Manager 53

Project teste
MName Version State
44 A Canella Renuirements 002 Unreferenced

o testerteste:Operational Analysis:Operational Context 334M of 1043M U:

File Edit Diagram MNavigate Search Project Run Window Help
NrERi e -

Tz *Capella Project Explorer 37

L

|B% BB S| O~ w2~ @~

Select a name to find
T = any character, * = any string

|E’<t | M

v [teste A
v [*teste.ird
~) teste
f# Operational Analysis
~ i} System Analysis
v [System Functions
w (& Root System Func
@ Identify a Ghot
@ Call for Help
& Clean Mess
@ Reopen
v (= Capabilities
@ Eamn Money
@@ Have no Ghost
@ Have fun
= Interfaces
(= Data
%8, System Context
£ System
v (= Actors
& Owner
% Clients
£ Club
(= Missions
£ Logical Architecture
F Physical Architecture
1 EPBS Architecture
(= Representations per category

= 8 %2, “teste & “[OAB] Operational Context &3 | & *[ORB] Operational Context &, *[OES] Scenario
-

176% | m@

& *[CSA] System

40E] Club

5,% Clients

Identify
@ a Ghost

% Owner
@ Manager
@ Call for j@—=DTM0st on club
Help
Repdrf Problems
@ Reopen
D=2 ghokt catched

|
lD‘-El club C|ﬁ41

® éeane/

.C\:.Ghost Reporting

[OAB] Operational Architecture Diagram
<<Operational Process>>

= workspace - platform:/resource/teste/teste.aird/[OAB] Operational Context - Capella

- x
__Culck Access s | =
= 8
. Palette [
eam-Nr-
(= Entities %

Operational Entity
& Operational Actor
DAl Communication Mean
+ & Operational Actors
» W Communication Means
= Roles P
& Role
[&] Manage Role Allocation
&, All Allocated Roles
s, Allocated Roles
= Activities ©
Operational Activity
DA Interaction
] Manage Activity Allocation
"W, Interactions
“w, Operational Processes
", Allocated Activities

", All Allocated Activities in
Entities

= Accelerators ©
(0 Activities from Mode / State

[Elements from Scenario

(= Common ©

teste.aft
D estes w {c} Constraint
< > - ConstraintElement
A Fast Linker 3 *= 08 ‘llll Clean ", Constraints
Mess + w_ Applied Property Value Groups
Prope: i er [l ements [Viewpaint Manager 53 4 | M= 0
Project teste
MName - Version State
45 A Canella Renuirements 002 Unreferenced
245M of 146M (]

o testerteste:Operational Analysis:Operational Context

[OES] Operational Entity Scenario

= workspace - platform:/resource/teste/teste.aird/[OES] Scenario - Capella

File Edit Diagram MNavigate Search Project Run Window Help
NrERi e -

T2 “Capella Project Explorer 37 = H R teste & *[OES] Scenario % | & “[CSA] System
lBS v B-E&-|SO-w- =@~ 150% |
Select a name to find Owner Clients
T = any character, * = any string
|Ext | O, &
v [teste A
v [*teste.ird
~) teste
f# Operational Analysis _i) Owner _i) Clients
~ i} System Analysis
v [System Functions r r
w (& Root System Func
@& Identify a Gho: ! ghost on club !
@ Call for Help :
& Clean Mess D
@ Reopen
v (= Capabilities |
@ Eam Money |~ ghostjcatched
@@ Have no Ghost
@ Have fun
= Interfaces
(= Data
%8, System Context
£ System
v (= Actors
& Owner
% Clients
£ Club
(= Missions

£ Logical Architecture
F Physical Architecture
1 EPBS Architecture
(= Representations per category

[
CTuf clean
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-

__CulckAccezz %‘l

L Palette

e

(= Scenarios Elements
[Operational Entity
& Operational Actor
@ Role

28

+ & Operational Entities / roles

X

B
[

< Interaction with Return Branch

— Interaction
—C Create message
—% Delete message
» = Arm timer
E”] Reference
+] Loop
|£] Operand
s, Activity
“w, State / Mode
T Duration
“w, Exchange Context
= Commeon
{c} Constraint
- ConstraintElement

“w, Constraints

+ w, Applied Property Value Groups

teste.aft
[testes .

< >

A Fast Linker 33 =08

Prope: i 23 er [ements [Viewpaint Manager 53 4 | M= 0
Project teste
MName - Version State
46 A Canella Renuirements 002 Unreferenced

[testerteste:Operational Analysis:Operational Capabilities::Have no Ghost:Scenario

467M of 1046M U:

ARCADIA SYSTEM ANALYSIS

Data Operational Analysis
= = I

g o6
£ S
§ i
7 | ' / d Analysis

! S - - ,
'§ '...‘ :‘_.- ' e T - ik ystem Nee alys
Z2 "-.‘ s *_‘R:-ﬂs-r;" :_qoata ‘

I it

a2 !

v H

! \

Ry < Logical Architecture
§ -
8
a
g
3
g
E Physical Architecture
<
&
E; Building Strategy

07:16

48

ARCADIA SYSTEMIC CONCEPTS:

* System: organized group of elements that function as a
unit (black box) and respond to the needs of the users.
The System owns Component Ports that allow it to
interact with the external Actors;

+J.

.|.+.T..|..L

Y

.

* Actor: any element that is external to the System (human
or nonhuman) that interacts with it. (for example Pilot,
Test operator, etc.);

, pes

Ffaath

* System Capability: capability of the System to provide a
highlevel service allowing it to carry out an operational
objective (for example provide meteorological data, etc.);

Og®, ®
-ilities

sysTem quaiily alfribules
MAINTAINABILITY SECURITY
TESTABILITY SCALABILITY

EXTENSIBILITY USABILITY
RELIABILITY VULNERABILITY

07:16

/
dm/s@b‘@rdl 4.”07@'15 more

52

07:16

53

* Function: behavior or service provided by the System or
by an Actor (for example detect a threat, measure
altitude, etc.). A Function owns Function Ports that allow
it to communicate with the other Functions. A Function

can be split into subfunctions;

* Functional Exchange: unidirectional exchange of
information or of matter between two Functions, linking
two Function Ports;

07:16 = Runef £ % Ground
_ Water

 Component Exchange: connection between the System
and one of its external Actors, allowing circulation of
Functional Exchanges;

07:16

55 shutterstwck

07:16

56

l

System

D=l Functional Exchange 1

§ 3 Actor 3

s Component
Exchange 1

Functional Exchange 2

@ Function 2

D=3 Functiondl Exchange 4

| V|
@ Function 4

07:16

57

* Scenario: dynamic occurrence describing how the System
and its Actors interact in the context of a System
Capability. It is commonly represented in the form of a
sequence diagram, with the vertical axis representing

o
time;
’ o] =
1:Open :
Applicafion .

5 : Retrieve Mood
6 - Mood D
8 - Retrieve Music

Gene
Playlist

* Functional Chain: element of the model that enables a
specific path to be desighated among all possible paths
(using certain Functions and Functional Exchanges). This is

particularly useful for assigning constraints (latency,

criticality, etc.), as well as organizing tests.

=)
1 Hr_,’ S
&

07:16

58

WHAT IS IN THE SYSTEM
ANALYSIS (SA)

E

“# System Analysis

“What the system must achieve for users”
“What the system has to accomplish for the users”

* The SA perspective defines the expectations of the system, that is
to say what the system has to perform for users: it builds an
external functional analysis, based on the OA and input textual
requirements, to identify in response functions, services and
expected system behaviors, necessary to its users.

e external functional analysis as a response to identify the system functions

needed by its users (e.g. “calculate the optimal path” and “detect a
threat”), limited by the non-functional properties asked for.

* The System is identified as a modeling element at this level. It is a
o1 black box” containing no other structural elements, only allocated
Functions.

- *The purpose of system needs analysis (referred to as SA
¢ further in the text) is to define the contribution expected
of the system to users’ needs, as they are described in the
previous operational analysis (OA) and/or in the form of
requirements expressed by the client.

*SA delimits the functions required of the system,
distinguishing them from those assumed by the users or
external systems.

* |t is essential to limit the functional analysis conducted in

SA to the sole capture of the need, and only of need,

excluding any implementation choice or details. This

allows freedom of choice to be maintained during the
o5 subsequent development of the solution,

61

" Perform Capability Analysis

Want a

- Define the essential characteristics necessary for safe road

the fulfillment of each operational capability (the problem
space), to uncover different alternative orientations likely to
satisfy these required capabilities as well as the criteria for
associated appreciation and choice (the solution space), and
to compare these orientations to find the one(s) exhibiting the
best compromise between the desirable characteristics.

e These parameters may concern the functional

contribution and the expected performance of the

system, obviously, but much further: organization, doctrines,

rocedures and users’ roles, human factors, skills and training,
ogistics footprint and deployment conditions, hosting
facilities, etc. Quantitative and qualitative metrics should be
defined to evaluate the satisfaction conditions for each of
these parameters.

* Capability analysis considers much more general aspects
than the functional issues: as the client organization,
organizational operating principles, roles and responsibilities,
nature and infrastructure capacity, safety, human factors and
users’ skills/training, logistics, acquisition and operation costs,
but also the potential complexity and implementational risks.

07:16

62

Perform Functional/non-Functional Need
Analysis

* The intent is to formalize the functional needs allocated to the

system, and to identify constraints, namely non-functional, to i station Intarmmtion systcin
which it will have to respond through its use under operational

1+1 . . L h th

Cond|t|0n5 @De'fcier:]n;gzltersaln @ c?::acrgur:

* Assess the operational capabilities to which the system will have i

to contribute, taking the preliminary capability trade-off analysis pachedites and
(of “system capabilities”? into account - only needs-related

d

considerations should be included in this perspective dedicated N ey
to the expression of the system needs as required by users 2% iformation

* In the event that actors or external systems are imposed by the e
client (or the state of the art) and exhibit a complex or critical level ‘ _—) hdtwork
of interactions with the system, it is recommended to carry out g oo e Pgllschedules | ‘
minimal functional and non-functional analyses for these external | overnme e Del Local Nietwork
systems or actors, and to compare them with the SA, to ensure the T —— 0
compatibility between the two. At this point, an analysis of i
available interfaces is desirable, to verify that planned Bpsheduleangtrains statuses +
functionalities and interactions will be possible. @ Supenise the . et

* Another way to address the needs functional analysis consists of e el EECEONE &
implementing each functional requirement into a few functions

07:16 and exchanges between them (often the verbs of the

requirement), the manipulated data (the names) and actors or
63 external systems..

naf
%~ Formalize and Consolidate the System Needs

CEI)
fan

* The good understanding and consolidation of system needs rely on
the three dimensions mentioned earlier, which are the OA,
requirements and the functional analysis of the system need.

* It is through their comparison that consistency and completeness
of the system need is assured: Are all activities and operational
processes correctly taken into account in the functional analysis?
Are all functional requirements g)r even nonfunctional) correctly
captured? Is there any incompatibility between them?

* It may even be the case that the functional needs analysis results in
moditying the OA (e.g. changing an operator role for a more secure
behavior, or reviewing the distribution of roles should an
opportunity for system automation emerge); or alternatively, that
the functional analysis reveals an inconsistency or something
missing in the requirements.

07:16

64

07:16

65

ﬂ Environment

G Door

D=l Opening/clo

D8l Heat or cold ® Protect from

e Heat or

cool

hot and cold

Allow
|@ entering/exitin
g the site

g

comman

B Site user

@ Illuminate

G Road vehicles, etc.

@ Circulate

eM

u[Road traffic ne

Dl Inside view

| @ Letlight in

Prevent light

penetrating

from

inimize
noise

Let light
® through

§r) Stop intrusions

Enter or leave
e the site

| ® Block light

and view

Let light
ethrough
: 4 Opening jction
to Ii}n
Protect
|G him/herself

from intrusions

2 Lock/unlock command

D=l Attenjpted intrusion

ﬁ Bystander or intru%er

Seek to see Seek to enter
e inside the site e

the site

SYSTEM DIAGRAMS

Detail the interfaces of the system as well as the Identify the boundaries of the system : who
ones of the actors, thus drawing the boundary [CSA] which are the actors, which are their goals?

of the system. Missions give a global view upon the system main
Describe scenarios in order to specify the business goals and usages.

Contextual

. . System
dynamical behavior of the system. Xctors YR Capabilities provide a more operational and
!Defm!ng. the _ interaction sequencgs and [1S] Interface [MCB] finer-grained enlightenment, directly related to
identifying the interfaces are two very tight and e Mission customer requirements. Capabilities are meant to

iterative activities. Capabilities be illustrated with scenarios.

Initialization and automated update of [CEI] [SFBD]
the system analysis according to the Contextual System
breakdown of operational activities. External Functional
The initialization and automated Interface Breakdown
updated of the system actors can also

be automatically performed from SyStem

selected operational entities / actors. Needs

The transition tools create a first 1-1 Ana Iysis

traceability mapping between System

Analysis and Operational Analysis. Use [CDI] [SDFB]
dedicated traceability matrices to Contextual System

modify the traceability relationships. Detailed Functional
Interfaces Dataflow

The system and the actors are responsible for [ES] [FS] El"ll’iCh and details the functional breakdown

implementing the system functions. Manage these Exchange Functional with new system functions.

allocations using an architecture diagram and deduce Scenario Scenario Describe the data flows between system

component exchanges implementing the functional [SAB] functions and identify specific functional
07:18xchanges. System chains.

Architecture

Create dataflows scenarios to illustrate the functional
67 exchanges between the system and the actors.

STEP BY STEP EXAMPLE

e
IMPORT DECISION FROM OA

- Transition From Operational Activities

o [
':-'r;.‘ !:l Perform an autemated transition of Operational Activities
S o

o

:) Create a System Functions / Operational Activities Traceability Matrix

~ Define Actors, Missions and Capabilities

o [
':-'r;.‘ !:l Perform an autemated transition of Operaticnal Capabilities
S o

o

s 0
':-I;.‘ !ﬂ Contextually create new Svstem Actors from Operational Entities [Actors
g

o

v 0
'3;-‘ i-ﬁ Contextually create new System Capability or Mission from Operational Capability
I o

oo

% %% [C5A] Create 3 new Contextual System Actors diagram

i_._.: !E Create a new Mission and / or Capability Blank diagram

07:16

[:) Create a Systern Actors / Operational Entities Traceability Matrix

69

[CSA] Contextual System Actors

= workspace - platform:/resource/teste/teste.aird/[CSA] System - Capella
File Edit Diagram MNavigate Search Project Run Window Help
BRIy
Ta *Capella Project Explorer 532 = B R “teste & *[CSA] System £7
8BS - BB~ $| D w-(wme| a6~

166% | @

L

Select a name to find
T = any character, * = any string

[ext | o & Owner

v I teste ~ Clients

v [*teste.ird
~) teste
f# Operational Analysis
~ i} System Analysis
v [System Functions
w (& Root System Func
@ Identify a Ghot
@ Call for Help
& Clean Mess
@ Reopen
v (= Capabilities
@ Eamn Money
@ Haveno Ghost 8%2] system
@ Have fun
= Interfaces
(= Data
%8, System Context
£ System
v (= Actors
& Owner
% Clients
£ Club
(= Missions
£ Logical Architecture Club
F Physical Architecture
1 EPBS Architecture
(= Representations per category
[testeaf

A Fast Linker 33 =08

07:16

Project teste

ements [Viewpaint Manager 53

- x

B3
= 8
b
-
= Tools %
R Actor
—P Actor Generalization

(= Common %
{c} Constraint
% ConstraintElement
&, Constraints

+ “w, Applied Property Value Groups

Version State

ninz2 Unreferenced

MName

70 (T Canella Reauirements

41 testenteste:System Analysis: System

198M of 1031M

a:

= workspace - platform:/resource/teste/teste.aird/[MB] Missions - Capella

File Edit Diagram MNavigate Search Project Run Window Help

- § i~ -
s Capella Project Explorer 52 = 8
g ~
Select a name to find
T = any character, * = any string
[ext o &
v [teste A

v [teste.aird
~ i teste
f# Operational Analysis
~ i} System Analysis
v [System Functions
w (& Root System Func
@ Identify a Ghot
@ Call for Help
& Clean Mess
@ Reopen
v (= Capabilities
@ Eamn Money
Have no Ghost
Have fun
&, [MCB] Capabilitie:
(= Interfaces
(= Data
&g System Context
73] System
v (= Actors
% COwner
% Clients
& Club
= Missions
f# Logical Architecture
£} Physical Architecture
£ EPBS Architecture
(= Representations per category v

[

< >

A Fast Linker 33 =4 a

07:16

%2, teste & [MB] Missions [% | & [MCB] Capabilities

Rr v & O % met s @l

Earn Money

Project teste

Provide

g% | m

Have no Ghost

Owner

(8 Viewpoint Manager 53

Have fun

[MB] Mission (identify the mission related to the
capability and the actors

- x
[ouckreces] | 5 |12
= 8
. Palette [
h““":‘\ J-N# -
= Tools %
R Actor
@ Capability
@ Mission

> Capability Exploitation
=¥ Actor Invelvement
—P Actor Generalization
&, Actors
", Capabilities
", Missions
%, Relationships
= Common el
{c} Constraint
¥ ConstraintElement
“w, Constraints
+ w, Applied Property Value Groups

Version State
ninz2 Unreferenced

MName

71 (T Canella Reauirements
163M of 954M @ 5

= workspace - platform:/resource/teste/teste.aird/[MCB] Capabilities - Capella
File Edit Diagram MNavigate Search Project Run Window Help

BRIy

Tz *Capella Project Explorer 37

L

Select a name to find
T = any character, * = any string

|E’<t | M

v [teste A
v [*teste.ird
~) teste
f# Operational Analysis
~ i} System Analysis
v [System Functions
w (& Root System Func
@ Identify a Ghot
@ Call for Help
& Clean Mess
@ Reopen
v (= Capabilities
@ Eamn Money
@@ Have no Ghost
@ Have fun
&, [MCB] Capabilitie:
(= Interfaces
(= Data
&g System Context
73] System
v (= Actors
% COwner
% Clients
& Club
= Missions
f# Logical Architecture
£} Physical Architecture
£ EPBS Architecture

(= Representations per category
[A

= B8 %2, “teste & *[MB] Missions & *[MCB] Capabilities 3
-

|BS BrEiv|H| D v m 4] &

[MBC] Mission Capabilities

195% | @

"B~

Provide a good place

Earn Money /

Owne

Have no Ghost

- x

[ouckreces] | 5 |12

= 8

b

7N

= Tools %
R Actor
@ Mission

@ Capability

> Capability Exploitation
=¥ Involved Actor
E3 Extends
,i,,) Includes
— Capability Generalization
— Actor Generalization
"W, Actors
%, Capabilities
&, Missions
%, Relationships
(= Common ©
{c} Constraint
- ConstraintElement
“w, Constraints
+ w, Applied Property Value Groups

< >
A Fast Linker 33 =08
Prope: i er [l ements [Viewpaint Manager 53 4 | M= 0
Project teste
MName - Version State
72 A Canella Renuirements 002 Unreferenced

(> testenteste:System Analysis:Capabilities

16TM of 943M

a:

B

[SAB] System Architecture

= workspace - platform:/resource/teste/teste.aird/[SAB] System - Capella - x
File Edit Diagram MNavigate Search Project Run Window Help

N BRI E ke | 5 |2

Ta *Capella Project Explorer 532 = 8 2, “teste & *[SFBD] Root System Function & *[SDFB] Root System Function & “[SAB] System 3 = 8
-

8% t-@i-|&|D-urlme a- @ afme | m >
Select a name to find J-N# -
7= * =
T = any character, any string = CampEEs -
: a
|Ex | ~ & v &] Actor
hd Lg‘t.arte ~ + D¥l Component Exchange
v [*teste.aird
- @ tecte + 4] In Flow Port
f# Operational Analysis ®, Actors
~ i} System Analysis + "8 Component Exchanges
v [System Functions + 8, Physical Links
w (& Root System Func
@ Identify a Ghot G Ghostbuster System (= Functions ©
@ Call for Help + @ System Function
g Clean Mess + D] Functional Exchange
Reopen
A
@ Receivea Call Ay Port Allocation
Deliver a ghosl Manage Function Allocation
&® !l 9
£ [SDFB] Root 5y + “®, Allecated Functions
= "Q‘b E_FBD] Root 5 Recei Deliver a s, Functional Chains
v apabilities ceive a .
& Esm Money () Call D=2 ghost catched @) ghost + %, Functional Exchanges
@ Have no Ghost "a C hed %, Port Allocations
© Havefun . = Accelerators ©
& [MCB] Capabilitie:
B> Interfaces () Functions from Mode / State
(= Data [FH Elements from Scenario
&g System Context
C 0
5] Ghostbuster System & & Common
9] {c} Constraint
M D=3l Call fof hel
% Owner d €lp w ghOSt catched - ConstraintElement
% Clients g, Constraints
R Club , Applied P Value G
5 Missions v pplied Property Value Groups
. - v ;
< > @ Clients
A Fast Linker 33 =08
Clean D=l club clean
(5] | 3&P) Reopen
Mess [
Prope: i= Informati er [l sirements [Viewpoint Manager 53 4 | M= 0
Project teste
MName - Version State
73 A Canella Renuirements 0.10.2 Unreferenced

4] testentestenSystem Analysis:Ghostbuster Systemn] 246M of 969M U:

[SDFB] System Dataflow

= workspace - platform:/resource/teste/teste.aird/[SDFB] Root System Function - Capella

- x
File Edit Diagram MNavigate Search Project Run Window Help
N E R D [Quick Acces] || g | (2
Ta *Capella Project Explorer 532 = 8 2, “teste & *[SFBD] Root System Function & “[SDFB] Root System Function 3 | & *[SAB] System = B8
8% ~ |8-%i-|#|D-w-lodta~[@- R >
Select a name to find J-N# -
T = any character, * = any string & Functions -
[ext oz (@) Identify a Ghost » @ System Function
v [teste X &) Actor Function
v iées::;lrd @ Clean Mess » DA Functional Exchange
f# Operational Analysis Y "®, Functions
~ i} System Analysis

+ & Functional Exchanges
&, Functional Chains

v [System Functions
w (& Root System Func

® Identity 3 Ghe: clean "%, Switch Functional Exchanges /
@ Call for Help D=il ghoshon club Categories

& Clean Mess (= Accelerators B
© Reopen @ Call for Help | ¥ (™ Functions from Mode / State
g Ezfli:reaagclwa\::Ll @ Reopen FH Elements from Scenario

& [SDFB] Root 5y
£ [SFBD] Root 5y
v (= Capabilities
@ Eamn Money
@ Have no Ghast
@ Have fun
& [MCB] Capabilitie:
(= Interfaces
(= Data
&g System Context
5] Ghostbuster System
~ (= Actors
% Owner
& Clients

hd
£ Club .
= Missions @ Receive a Call

o

“ Functional Chain Elements

(= Common @0
{c} Constraint

D=l ghosy catched - ConstraintElement

&, Constraints

+ ", Applied Property Value Groups

(&) Deliver a ghost Catched

host catched

A Fast Linker 33 =08

07:16

sirements [Viewpoint Manager 53
Project teste

MName Version State
74 A Canella Renuirements 0.10.2
@& testeteste:System Analysis:System Functions:Root System Function

Unreferenced

201M of 965M U:

= workspace - platform:/resource/teste/teste.aird/[SFBD] Root System Function - Capella

File Edit Diagram MNavigate Search Project Run Window Help
NrERi e -

Ta *Capella Project Explorer 532 = B R “teste & “[SFBD] Root System Function
-

L

|B% BB S| O~ w2~ @~

Select a name to find
T = any character, * = any string

|E’<t | M

v [teste A

&% “[SDFB] Root System Function

x63% | m@

& “[SAB] System

& “[SFBD] Root System Function £3

[SFBD] System Functional Breakdown

v D *teste.aird
~) teste
f# Operational Analysis
~ i} System Analysis B
v [System Functions @ |dent|fy
w (& Root System Func

@ Identify a Ghot
@& Call for Help
& Clean Mess
@ Reopen

@ Call for

a Ghost Help

@ Clean

Mess

@ Reopen

@R

ecejve
a Call

Deliver a
ghost
Catched

@ Receive a Call
(& Deliver a ghos!
& [SDFB] Root 5y
£ [SFBD] Root 5y
£ [SFBD] Root 5y
v (= Capabilities
@ Eamn Money
@ Have no Ghost
@ Have fun
& [MCE] Capabilitie:
(= Interfaces
= Data
&g System Context
§7] Ghostbuster System
v (= Actors
& Owner
& Clients
% Club

s

A Fast Linker 33 =08

07:16

Project teste

(8 Viewpoint Manager 53

- x

[awesrcce] i g2 |
= B8
[

1N

= Functions %
(&) System Function

+ (] Duplicate
fCDntamed In

(= Common %
{c} Constraint
% ConstraintElement
"%, Constraints

+ “w, Applied Property Value Groups

MName

75 (T Canella Reauirements

Version
ninz2

State

Unreferenced

@& testeteste:System Analysis:System Functions:Root System Function

286M of 965M U:

[FS] Functional Scenario

= workspace - platform:/resource/teste/teste.aird/[F5] Scenario - Capella - x

File Edit Diagram MNavigate Search Project Run Window Help

18- TP NP [awesrcce] i g2 |

*Capella Project Explorer 53 = 8 %2, *teste & *[FS] Scenario £% = B8
P i Pl =
|BS ~ B-iv|$| O m o &0 | m L
Select a name to find Clean Mess Deliver a ghost Catched Receive a Call Call for Help J-N# -
7= haracter, * = t
any character any =tring (= Scenarios Elements %
. Q
|Ex | Rl + &) System Function
v I teste X &, Functions
*teste.aird
v B éie i‘r < Functional Exchange with
> este branch
: Deliver a retumn
H Operational Analysis Clean Mess Receive a Call Call for Hel
v 3 System Analysis _i' _T' ghost Catched _i’ _i’ P —* Functional Exchange
~ B System Functions I : : I E] Reference
w (& Root System Func | | | | N LOOP
@& Identify a Gho: : : X Call for help [£] Operand
@ Call for Help 1
& Clean Mess | | |:| | &, Involved State / Mode
@& Reopen | | | T Duratien
@ Receive a Call | ! ghost catched ! | ", Exchange Context
& Deliver a ghosl | 1 | =
& [SDFB] Root Sy | | | (= Common @
£ [SFBD] Root 5y | | | {c} Constraint
£ [SFBD] Root 5y | ghost catched | | | - ConstraintElement
v (= Capabilities
@ Form Meney | | | “w, Constraints
@ Have no Ghost [[[+ s, Applied Property Value Groups
@ Have fun | | |
& [MCE] Capabilitie: | | | |
(= Interfaces | | | |
(= Data | | | |
&g System Context | | | |
§7] Ghostbuster System : : : :
v (= Actors | | | |
& Owner
& Clients ! ! ! !
2 Club ! ! ! !
i ¥ [[[[
< >
! ! ! !
A Fast Linker 33 =08 [[[[
! ! ! !
| | | |
| | | |
| | | |
| | | |
| | | |
Prope: i= Informati er [sirements [Viewpoint Manager 53 4 | M= 0
Project teste
MName - Version State
76 A Canella Renuirements 002 Unreferenced

[testertestenSystem Analysis:Capabilities::Have no Ghost:Scenario] 337TM of 71M U:

[ES] Exchange Scenario

= workspace - platform:/resource/teste/teste.aird/[ES] Scenario - Capella - x

File Edit Diagram MNavigate Search Project Run Window Help

MRS D [Quick Acces] || g | (2

Ta *Capella Project Explorer 532 = B R “teste & “[ES] Scenario EE = 0
8BS ~ B~-B-| S, D uvlo o @ 5% | m i Palette b

L

Select 3 name to find Ghostbuster System Owner k®am- N
7= any character, * = any string (= Scenario Elements @
t €
|Ex | i 3 Component
v [teste ~ 2 Actor
*teste.aird
v [*teste.ain . gT,A\:Id multiple lifelines for an
~) teste) existing Component
i} Operational Analysis -i) Ghostbuster System -i, Cwner » W, Actors
~ i} System Analysis
v [System Functions » —* Functional Exchange

w (& Root System Func + o Arm timer

g :falr;":y; C‘iho: L Call for help + %= Found Functional Exchange
all for Help !

@ Clean Mess D | &, Allocated Function

@& Reopen | &, Involved State / Mode

@& Receivea Call ghost catched |] Reference

(& Deliver a ghos! -

£ [SDFB] Root Sy » wlLOOP

2 [SFBD] Root 5y [£-] Operand

£ [SFBD] Root 5y T Duration

v (= Capabilities s, Exchange Context

@ Eamn Money
@ Have no Ghost (= Common £
@ Havefun {c} Constraint
& [MCE] Capabilitie: ¥ ConstraintElement
Interfaces
g Data “w, Constraints

&g System Context
§7] Ghostbuster System

+ ", Applied Property Value Groups

v (= Actors
& Owner
& Clients
% Club
—haie A
< >
A Fast Linker 33 =08
Prope: i a er [l sirements [Viewpoint Manager 53 4 | M= 0
Project teste
MName - Version State
77 A Canella Renuirements 002 Unreferenced

[testertestenSystem Analysis:Capabilities::Have no Ghost:Scenario] 302M of 572M U:

= workspace - platform:/resource/teste/teste.aird/[CEl] Ghostbuster System - Capella

File Edit Diagram Mavigate Search
NrERi e -
Ta *Capella Project Explarer &7 =

=R

L

Select a name to find
T = any character, * = any string

|Ext

v [teste
v [*teste.ird
~) teste
f# Operational Analysis
~ i} System Analysis
v [System Functions
w (& Root System Func
@ Identify a Ghot
@ Call for Help
& Clean Mess
@ Reopen
@ Receive a Call
(& Deliver a ghos!
& [SDFB] Root 5y
£ [SFBD] Root 5y
£ [SFBD] Root 5y
v (= Capabilities
@ Eamn Money
@ Have no Ghost
@ Have fun
& [MCE] Capabilitie:
(= Interfaces
= Data
&g System Context
§7] Ghostbuster System
v (= Actors
& Owner
& Clients
% Club

s

A Fast Linker 33 =08

07:16

78

1] testenteste:System Analysis: Ghostbuster System

8 % “teste & *[ES] Scenario & *[CDI] Ghostbuster System
-

Project Run Window Help

& *[CEl] Ghostbuster System £3

0% | m@

Br&v|S|Dwr|m A B

| o &

A

@ Ghostbuster System

.

.
~a
.

.

Phone .. GhostTrap

-

)

s

-

sirements [Viewpoint Manager 53
Project teste

MName

[CEI] Contextual External Interface

- x

__CulckAccezz @,’l

= 8

L Palette
Leas-Xd-

(= External Interfaces

28

- Component
R Actor
+ 4] In Flow Port
Q Interface
--P Implements
=¥ Uses
a-p Provides
8-> Requires
— Generalization
+ & Event
--P Exchange ltem Allocation

8 Transmit

8 Acquire

‘&, Components
“w, Actors

w, Interfaces

“w, Exchange ltems

“w, Relationships

g

= Common %

{c} Constraint
% ConstraintElement
&, Constraints
+ % Applied Property Value Groups

Version

(T Canella Reauirements n.10.?

State

Unreferenced

345M of 975M

a:

[CDI] Contextual Detailed Interface

= workspace - platform:/resource/teste/teste.aird/[CDI] Ghostbuster Systemn - Capella - x
File Edit Diagram MNavigate Search Project Run Window Help

T [recs] | 5 |3

*Capella Project Explorer 53 = 8 %2, “teste & *[ES] Scenario &, *[CDI] Ghostbuster System 3 | & *[CEl] Ghostbuster System & *[CDB] Data = B8
P i P! D Y y:
-

== Br&v|S|Dwr|m A B wn | @ 3 Pelette b
Select a name to find keaD-X-
T = any character, * = any string (= Detailed Interfaces &
t b
|Ex | N i Q Interface
v [teste ~ + 4] In Flow Port
v [*testeaird --b Implements
~) teste 3
f# Operational Analysis Uses
v £ System Analysis 8% Requires
v [System Functions o Provides

w (& Root System Func

@ Identify a Gho: —P Generalization

@ Callfor Help » % Event
& Clean Mess @ Exchange Itemn Element
@& Reopen ¥ Transmit
R Call
@ Receive s Ca M Acquire
@& Deliver a ghos! >

£ [SDFB] Root Sy %] Manage Exchange ltem
& [SFBD] Root Sy Allecations
2, [SFBD] Root Sy !: G h tb t S _t + W, Interfaces
v [= Capabilities OS u S e r yS el I I » ' Exchange ltems
@ Eamn Money .
@ Have no Ghost . Relationships
@ Have fun = Common @
& [MCE] Capabilitie: {c} Constraint
(= Interfaces »C —
= Data onstraintElement
% Constraint:
ke System Context) s %, Constraints
#58] Ghostbuster System ._." + W, Applied Property Value Groups
v Actors -
=z & Owner e -
.
% Clients _,-"
-
% Club et
v "
A i "
< > 2 et
A Fast Linker 33 =08 O h
Prope: i er [l ements [Viewpaint Manager 53 2 | M= 8
Project teste
MName - Version State
79 A Canella Renuirements 002 Unreferenced

4] testentestenSystem Analysis:Ghostbuster Systemn] 195M of 977TM U:

INavaR

= workspace - platform:/resource/teste/teste.aird/[SAB] System - Capella

File Edit Diagram MNavigate Search Project Run Window Help

M E @A IE D
75! Ta *Capella Project Explarer &7 = 8
2 ¢4 BES v

Select a name to find
T = any character, * = any string

2, “teste &, *[SAB] System %

[ext o &

v [teste
v [*teste.ird
~) teste

A AL AN Rl = 1E- RN -Rd

1 Operational Analysis
~ i} System Analysis
v [R] [Capella Module]

Q

v &

Q

Q

- The System shall

1
[

|

- The System shall

-
.
-

el

@ The System shall
@ The System shall
@ The System shall
(@ The System shall
(@ The System shall
@ The System shall
@ The System shall
(@ The System shall
w ([System Functions
@& Root System Functic
w (= Capabilities
@ Eamn Money
@ Have no Ghost
@ Have fun
& [MCEB] Capabilities
= Interfaces
(= Data
%8, System Context
7] Ghostbuster System
v [Actors
£ Owner
% Clients

Q

- The System shall

- The System shall [~ _ EII
N B

- The System shall

-

@Re

ceive a
Call

$:| Ghostbuster System
.- Q

- The System shall

Deliver a .

D= ghost catched | @GP ghost (R

Catched

- The System shall

&

<]

£ Club

= Missions
£ Logical Architecture
F Physical Architecture
£} EPBS Architecture
(= Representations per category
[teste.afm
= teste.melodymodeller

ﬁclients

D=3 ghost on

D= call fdr h E
TS%CaIRg uest D=l Momey Tes

"~ ~£ el ghost catche
| Ghost Cgtched info

>

club

07:16

80 < > <

1] testenteste:System Analysis: Ghostbuster System

Bl

@ Call for

Help

B

Q

- The System shall

334M of 95TM U:

[SAB] System Architecture with Requirements

=
|
i
(= Components P
v &] Actor g_
+» Dl Component Exchange (&
+ 4] In Flow Port
&, Actors

+ "8 Component Exchanges
+ "W Physical Links
= Functions Ll
+ @ System Function
+ D41 Functional Exchange
A Port Allocation
& Manage Function Allocation
» "W, Allocated Functions
&, Functional Chains
+ ", Functional Exchanges
&, Port Allocations
(= Accelerators w0
() Functions from Mode / State
[Elements from Scenario
(= Common w0
{c} Constraint
- ConstraintElement
g, Constraints
+ w_ Applied Property Value Groups
(= Requirements £l
", Requirements
~¥ Requirement Link
» " All Linked Requirements

LOGICAL ARCHITECTURE

Data Operational Analysis
= = I

g o6
£ S
§ i
7 | ' / d Analysis

! S - - ,
'§ '...‘ :‘_.- ' e T - ik ystem Nee alys
Z2 "-.‘ s *_‘R:-ﬂs-r;" :_qoata ‘

I it

a2 !

v H

! \

Ry < Logical Architecture
§ -
8
a
g
3
g
E Physical Architecture
<
&
E; Building Strategy

07:16

82

LOGICAL ARCHITECTURE
CONCEPTS

*Logical Component: structural element within the
System, with structural Ports to interact with the other
Logical Components and the external Actors.

Ct
can also be subdivided into Logical subcomponents;

07:16

84

* Logical Actor: any element that
(human or non-human) and that interacts with it (for
example Pilot, Maintenance operator, etc.).

07:16

85

* Logical Function: provided by a
Logical Component or by a Logical Actor. A Logical
Function has Function Ports that allow it to
communicate with the other Logical Functions. A Logical
Function can be subdivided into Logical subfunctions;

07:16

86

* Functional Exchange: a unidirectional exchange of
information or matter between two Logical Functions,
linking two Function Ports;

07:16

87

 Component Exchange:
and/or the Logical Actors, allowing
circulation of the Functional Exchanges;

07:16

88

- | D= Functional Exchange 1 Logical Actor 2

Component
Exchange 1

D=] Functional Exchange 2

07:16

89

* Logical Scenario: dynamic occurrence describing the
interactions between Logical Components and Logical
Actors in the context of a Capability. It is commonly
represented as a sequence diagram, with the vertical axis
representing the time axis;

07:16

90

* Functional Chain: element of the model that enables a
specific path to be desighated among all possible paths
(using certain Functions and Functional Exchanges). This is

particularly useful for assigning constraints (latency,
criticality, etc.), as well as organizing tests;

07:16

91

WHAT IS IN THE LOGICAL
ARCHITECTURE (LA)?

E

“# Logical Architecture

InaviR

“How the system will work to meet expectations”
“How the system will work to fulfill expectations”

*In response to the need expressed by the two previous
perspectives, it enables the first major choices of solution
design, first via an internal functional analysis of the system: it
describes the functions to be performecY and assembled in
order to implement the service functions identified in the
previous phase. It continues with the identification of the
operational components implementing these solution
functions, integrating the non-functional constraints that we

- chose to be addressed at this level.

93

~ «The level of Logical Architecture aims to identify Logical
Components inside the System (“how the system will
work to fulfill expectations”), their relations and their
content, independently of any considerations of
technology or implementation.

* Next an internal functional analysis of the system must
be carried out: the subfunctions required to carry out
the System Functions chosen during the previous phase
must be identified; next, a split into Logical Components
to which these internal subfunctions will be allocated
must be determined, all the while integrating the
nonfunctional constraints that have been chosen for
processing at this level

07:16

94

~a— *The definition of the LA (an activity often — and wrongly —

#A designated “logical architecture” for convenience)
consists mainly of a comparison between the needs
expressed in previous perspectives, a functional analysis
describing the system behavior chosen to satisfy
requirements, and a structural analysis intended to
identify the components that will constitute the system,
taking the chosen constraints and structuring principles
Into account.

*The LA is therefore a , moderately

detailed, somehow an abstraction, of what the
7 architecture of the system will be

95

%Jg

07:16

96

~ The main activities to be undertaken for the definition

of the logical principle architecture are as follows:

* to define the factors impacting the architecture and
analysis viewpoints;

* to define the principles underlying the system behavior;

* to build structuring
alternatives;
*to select the offering the best

compromise.

*" Definition of the factors impacting the

architecture and analysis viewpoints

* Any properly designed architecture satisfies several

expectations and constraints of various kinds, which
constrain and influence or even direct its definition, and
whose satisfaction should be verified as early as possible
to minimize possible subsequent resumption costs.

* These factors that constrain the architecture depend largely on each domain, and each profession. As examples we
mention: delivered services and costs of course, expected performance, safety of operations, privacy, ease of
maintenance, life duration, energy or logistical footprint, availability, product policy, scalability, but also more
“aesthetic” considerations such as customer satisfaction.

07:16

97

* For each factor previously identified, the associated
constraints (especially nonfunctional and performance
ones), which can be applied to the needs and the
solution, must be expressed and quantified by metrics;
each candidate architecture will be analyzed according
to this viewpoint, to verify that good practice is correctly
followed.

* These decisions reflect know-how, the craft, in addition to the creativity of the engineering team, and will guide the
emergence of different alternatives as well as their comparison.

* Imposed factors and design choices must be categorized by importance or priority, in order to be able to arbitrate
between them when they result in antagonistic properties, or when certain constraints will have to be released to
find an acceptable compromise.

07:16

98

& °*In the case of the traffic control system, the first impact

factor is obviously the safety of goods and people. An
additional factor involves , their training
and their required skills, the scope of their responsibility
and the role that must be assigned to them. We should
also take into account factors such as environmental
conditions, life duration, constraints on logistics and
maintenance.

* In the case of the traffic control system, let us mention the
required reliability rate and the system failure probability,
the capability to be able to operate in the event of partial
failure of certain subsystems; the maximal eligible number
of operators;, extreme temperature ranges, humidity,
resistance to possible salt sprays; etc.

99

%5 Definition of the behavior principles of the

system

* The objective is to formalize the principles of the desired behavior of the system, and to non-functional,
to which it has the responsibility to respond during its operation under operational conditions.

* A common mistake consists of considering the behavior of the
solution as a simple refinement of the previous functional
expression of need at a finer level of detail. The solution design
is much more than that: it is a take into account the
constraints, namely “creative” definition effort of a behavior
that meets the need (and that does not refine it), detailing the
processes and steps starting from the solicitations of the
system, up to the provision of services, results or outputs,
taking into account design decisions, mainly guided by the
factors and constraints identified previously.

07:16

100

] — identify and formalize need items captured. (tracing
w8 to SA)

e 2 — search for possible functions already in the LA that
could also play a role to solve the need. (minimize
functions)

3 — verify function boundaries to achieve what is
expected of it.

* Scenarios / chains will add light to design decisions or to the
choice of product line.

4 — build a complete and coherent global description
-5 Using the behavioral elements (scenarios/state machines)

101

Construction of component-based system
structuring alternatives

* This step should reveal a number of Dcontrol system
p ri n Ci p | e SO I u tl on S, d esc ri bi n g t h e £1Procedures command control {]safety command control
Breliminary structure of the system,
uilt on the basis of the previous behavior,
incorporating both non-functional ATFE——— AT
associated constraints and the factors and OlRallway signaling | [CIRailway detection C1Road signaling CIRoad datection
design choices underlying it.
e The system is broken down into principle
components called logical components.
The term “component” is understood here || rainemergency || petection onthe TiRoad barriers
in the general sense, as a constituent of s i

the system at this level; it can later be
implemented as a subsystem (or several),
equipment, one or more mechanical parts
or assemblies, one or more electronic
cards, a software program itself eventually
distributed or even a %uman contributor.

07:16

102

- *The component building

process consists of grouping

oiether or segregating the
e

atus

t

behavior functions previously
defined, according to the
constraints and criteria

imposed, in grouping sets that
thus constitute the
components. These latter can

themselves be structured by
subcomponents, according to
the same types of criteria if
necessary.

|t is recommended to submit
each choice of functional
grouping to the multi-viewpoint
analysis

07:16

103

07:16

104

* The (preliminary) definition of interfaces

between components (or with external actors)
can be done at this level (or be postponed until
the definition of the physical architecture): they
are built based on the functional exchanges
linking the functions allocated to these
components or actors, and exchanges data (and
exchange elements) that these exchanges
convey; data and exchanges are mainly grouped
according to semantic proximity or usage
considerations.

The actual exchanges between components are
also achieved by way of grouping functional
exchanges; combined with the capability to hide
subcomponents in order to consider those of
first level only, this also constitutes a level of
synthesis or even of abstraction able to hide the
complexity of functional exchanges, and to
reason on several levels of detail.

| EQTrain departures

|

.

v
bl bl bl bl

5 Train identifier : String

—0 Quality of service : Timeliness
—5 Track : Track number

—5 Status: Situation in station

;‘I §) station information system

~a * This static definition of interfaces J— T
; most often must be accompanied by I G B

a dynamic definition, by creating = yespn — R
scenarios at the boundaries of the —
components, and if necessary, state - i i
and modes machines associated e
with each contributor to exchanges
and managing this dynamics of “rlm—
interfaces. @unaml | @

* Furthermore, states and modes can
be defined and allocated to . . — e ——
components, based on those . s=s ’ ‘ |
implemented at the system level in —= e
the previous behavioral functional == -

analysis, and consistent with them.

105

Selection of the architecture alternative offering
A the best trade-off

* The purpose of this activity is to find among previous candidate
architectures the one that represents the best trade-off with
respect to all viewpoints under consideration, and to justify its
compliance to the need.

* Each alternative has in principle been evaluated based on the
major viewpoints impacting it — and their relative importance —
during its definition; the inadmissible nonconformities have
been eliminated, but as the evaluation is rarely binary, the
point is therefore now to

, of which
previously identified viewpoint analyses, priorities and metrics
are key elements.

07:16

106

G Door

D Door frame insulation and §] Locking mechanism

occultation device
Fills the space @ Lockthe @ Unlock the
of the door door door
frame sure
. D=) External Unlocking
Pt command
The occultation must also Dy Locking 3
i i comman
{€} isolate external noise and D Door unlgcked gy Internall unlocking
temperatures o s
g Glass opening D Ar’iculation mechanism
Prevent
©@ light fror:n () Set the door to
penetratin

open position
9

Insidg i
: : : -|External locking
view D= Occultation action D<) Exterpal opening command
— qommand A
/ peg Internal ppening
] command
4 CF Sitg user
Seekto Protect
© e msiltde I@ him/herself from @ Enter the site @ Exit the site
€ e / intrusions
/ |_M_Intern§| locking
. . command
0716 Seek to © Block |l9ht © Let light
: @ enter the and view through
locked site -) - -
107 Opening action to light

LOGICAL ARCHITECTURE
DIAGRAMS

Specify the dynamical behaviour of the logical
components by completing the interaction
sequences coming from the System Analysis. The
enrichment of the interaction sequences and the
identification of the logical interfaces are two very
tight and iterative activities.

The scenario refinement process is iterative, each
update on a source can be automatically
propagated to the target.

Specify the dynamical behaviour of the logical
components by completing the interaction sequences
coming from the System Analysis. The enrichment of the
interaction sequences and the identification of the logical
interfaces are two very tight and iterative activities.

The scenario refinement process is iterative, each upg
on a source can be automatically propagated to the

[CII] Contextual

Internal

Interfaces

Initialization and automated update of the
logical functions according to the system
functions

The transition tools create a first 1-1
traceability mapping between Logical
Architecture and System Analysis. Use
dedicated traceability matrices to modify
the traceability relationships.

The logical components are responsible for implementing
the logical functions. Manage these allocations using an
architecture diagram and deduce component exchanges
iroptegenting the functional exchanges.
Create dataflows scenarios to illustrate functional exchanges
between the components.

109

[ES] Exchange
Scenario

[LFBD]
Functional
Breakdown

BIET{]

Logical

Architecture

[LAB] Logical

Architecture

[LDFB]
Functional
Data Flow

Enrich and details the functional breakdown with
new logical functions.

Describe the data flows between logical functions
and identify specific functional chains.

[FS] Functional
Scenarios

[LCBD] Logical
Components
Breakdown

The initialisation and automated updated of
the logical actors can be performed
according to system actors.

Use an architecture or breakdown diagram
to describe the system internal building
blocks from a logical point of view.Logical
components are intended to interact with
each other to achieve the functional goals of
the system.

STEP BY STEP EXAMPLE

IMPORT DECISION FROM SA

» Iransition from System Functions

|
%‘ E—J Perform an automated transition of Systern Functions
o

el a

:) Create Traceability Matrix

p Refine Logical Functions, describe Functional Exchanges
» Define Logical Components and Actors

A
§

L:I;- o Perform an automated transition of Systermn Actors
ol

B 8
o #.j LCBD] Create a new Logical Component Breakdown diagram

]
Elﬂ LAB] Create a new Logical Architecture diagram

p Allocate Logical Functions to Logical Components
p Delegate System Interfaces and create Logical Interfaces

~ Enrich Logical Scenarios

ol
;{“ E—J Perform an automated transition of Systern Analysis Capabilities
e

el

)
;{“ E—J Execute a global refinement of all System Analysis Capabilities and Scenarios
=

- ¢
St
07:16 »
lf? 15] Create a new Interface Scenario
111 } Transverse Modeling

'y

'y

Jr

&g

'y

'y

07:16

112

B

[LAB] Logical Architecture

= workspace - platform:/resource/teste/teste.aird/[LAB] Logical System - Capella
File Edit Diagram MNavigate Search Project Run Window Help

- v -
T+ Capella Project Explarer i3 = B8 % teste &4 [LAB] Logical System £I | & [LFBD] Root Logical Function & [LDFB] Root Logical Function & [FS] Scenario & [LCBD] Ghostbuster System &, [ES] Scenario
B% ~ ®-%i-l¢B-w-lesla-lB-laal= |m

Select a name to find
T = any character, * = any string

|type filter text

=5 dddd
v [teste
[teste.afm
~ teste.aird
42 teste
(= Representations per category
= teste.melodymodeller

EI Ghostbuster System

ECatching Group

>
| 3LF) Catch Ghost

ECaIIing Group

atching Order D= ghost catched

@ Receive a Call

D= Ordler Deliver a
Al ghost Catched
'yl
im! Al
D= ghost ed
D=3 call Request &
D1 Cal for el D= Ghost Catched info ‘[D=3l Money
Al] &)
#}lovamer
A Fast Linker 33 » =0
1}' Clients
hd
Call
for @) Clean Mess| @) Reopen
[thoston club) Help club dlean

testerteste:Logical Architecture:Ghostbuster System] 461M of 1650M U:

-

[t | 5 |

= 8

X

(= Components Ll

{ I Logical Component
ELDgwcalAdur
+» Dl Component Exchange
+ 4] In Flow Port
‘&, Components
&, Actors

", Component Exchanges /
Delegations

+ W, Physical Links
= Functions Ll
+ @ Logical Function
+ D Functional Exchange
A5 Port Allocation
[&] Manage Function Allocation
+ W, Allocated Functions
s, Functional Chains
+ “w, Functional Exchanges
s, Port Allocations
(= Accelerators ©
() Functions from Mode / State
[Elements from Scenario
(= Common ©
{c} Constraint
- ConstraintElement
“w, Censtraints
+ w_ Applied Property Value Groups
(= Requirements @0
", Requirements
~¥ Requirement Link
» ' All Linked Requirements

Blm 0 =

[FS] Functional Scenario

= workspace - platform:/resource/teste/teste.aird/[F5] Scenario - Capella - x

File Edit Diagram MNavigate Search Project Run Window Help

e B @A i [t | 5 |

i

07:16

T+ Capella Project Explarer i3 = B8 %2, teste &, [LAB] Logical System & [LFBD] Root Logical Function & [LDFB] Root Logical Function & [FS] Scenario B2 | & [LCBD] Ghostbuster System &, [ES] Scenario = B8
|B% ~ RBr&i-|$Brw-|met|@-| @ alw | @ b
Select a name to find Deliver a ghost Catched Catch Ghost Receive a Call J-N# -
T = any character, * = any string & Scenarias Elements -
|typeﬁ|tertext & + @@ Logical Function
L?f dddd &, Functions
v 1 teste < Functional Exchange with
. S ::::;:‘ ‘ return branch
i téste _i’ Deliver a _E’ Catch Ghost _E) Receive a Call —* Functional Exchange
[Representations per category ghost Catched E7] Reference
= teste.melodymodeller I ‘ ‘ N LOOP
| I I |1 Operand
| | | &, Involved State / Mode
: : Catching Order : f_& :::::n Contert
ge Contex
! ‘ = Commeon Ll
: : {c} Constraint
| | % ConstraintElement
| | “, Constraints
I ghost catched I + W, Applied Property Value Groups
I [Requirements 45
: “®, Requirements
I ~¥ Requirement Link
| + ", All Linked Requirements
I
I
I
I
I
I
A Fast Linker 33 » =0 I
I
I
I
I
I
I
I
I
I
I
I

113

[testertestenLogical Architecture:Capabilities:Have no Ghost:Scenario] 327M of 1650M U:

[ES] Exchange Scenario

= workspace - platform:/resource/teste/teste.aird/[ES] Scenario - Capella - x

File Edit Diagram MNavigate Search Project Run Window Help

e B @A i [t | 5 |

i

T+ Capella Project Explarer i3 = B8 %2, teste &, [LAB] Logical System & [LFBD] Root Logical Function & [LDFB] Root Logical Function & [FS] Scenario & [LCBD] Ghostbuster System &, [ES] Scenario EX = B8
|B% v ®-&%i- | B-w-|me @@= | m b
Select a name to find Calling Group Catching Group Cwner 5N -
= any character, * = any string > Scenario EHlements -
|typeﬁ|tertext O, & I3 Component
Ljf dddd R Actor
v I teste
- [testeaim -?, Calling Group %Catching Group -T, Owner * X Compenerts
v [teste.aird + W, Actors
42 teste T T T + — Functional Exchange
(= Representations per category » =* Arn timer
= teste.melodymodeller | ! Call for help ! w
T 1 » "= Found Functional Exchange
| | &, Allocated Function
| | s, Involved State / Mode
| Catching Order I I E’] Reference
; D : » EJLoop
| | [£] Operand
| | | 1 Duration
| | ghost catched | “w, Exchange Context
| ! D = Common 0
I ! {c} Constraint
: : : - ConstraintElement
| | | “w, Censtraints
| | | + w, Applied Property Value Groups
| [| (= Requirements w0
| ! ! “®, Requirements
: : : ~¥ Requirement Link
| | | + " All Linked Requirements
| | |
| | |
A Fast Linker 33 » =0 | | |
| | |

07:16

114

[testertestenLogical Architecture:Capabilities:Have no Ghost:Scenario] 391M of 1650M U:

BD]| Logical Functional Break down

= workspace - platform:/resource/teste/teste.aird/[LFBD] Root Logical Function - Capella

File Edit Diagram MNavigate Search Project Run Window Help

e P i D

- x

T+ Capella Project Explarer i3 = 0

__CulckAccezz %‘l

%2, teste & [LAB] Logical System & [LFBD] Root Logical Function &2 | & [LDFB] Root Logical Function & [FS5] Scenario

& [LCBD] Ghostbuster System &, [ES] Scenario
B ¥~ RB-B-|f B-w-lmeA|a-|B-|®

=5 '5'
% | m 2% Palette =]
Select a name to find h [CHCY ,,Y & . i
7= "=
i an%r character, any string & Functions - 3
|typef|ltertext ‘ Al (@ Logical Function
5 dddd + (€] Duplicate
v =5 teste
g Centained In
[testefm . . Deliver a <
v [teste.sird Identify @ Call for Clean @ Reopen @ Receive @ ghost @ Catch & Common P
84 tests
& tese a Ghost Help Mess a Call Ghost (€} Constrint
(= Representations per category Catched 3 ConstraintElement
= teste.melodymodeller
“s, Constraints
+ W, Applied Property Value Groups
[Requirements 45
“®, Requirements
~¥ Requirement Link
+ ", All Linked Requirements
A Fast Linker 33 » =0

07:16

115

(@ testeteste:Logical Architecture:Logical Functions:Root Logical Function

617M of 1650M U:

= workspace - platform:/resource/teste/teste.aird/[LDFB] Root Logical Function - Capella

File Edit Diagram MNavigate Search Project Run Window Help
e R SR~ -

&, [LAB] Logical System & [LFBD] Root Logical Function

L[157 | m

T2 Capella Project Explorer 52 = 0 R teste
-

lBs ~ R -%-|Ffle-w-leela-|@-|Q

Select a name to find
T = any character, * = any string

|type filter text

=5 dddd
v [teste
[teste.afm
v [teste.aird
42 teste
(= Representations per category
= teste.melodymodeller

Reopen
@ Reop

LA

D=l clu clean

FB| Logical Data Flow

& [LDFB] Root Logical Function §% | & [FS] Scenario

(@0 Identify a Ghost

<

D= ghost gn club

@ Clean Mess

¥
@ Call for Help

De3 Call for help

& [LCBD] Ghostbuster System

&, [ES] Scenario

A Fast Linker 33 » =0

D=3l ghost catched

07:16

116 <

(@ testeteste:Logical Architecture:Logical Functions:Root Logical Function

(L) Deliver a ghost Catched

ched

(L) Receive a Call

<

D=2 Catchihg Order

hd
@ Catch Ghost

698M of 1650M

o:

-

__CulckAccezz @,’l

= 8

= Functions Ll

+ @@ Logical Function
@ Actor Function

» DA Functional Exchange
&, Functions

+ & Functional Exchanges
&, Functional Chains

“®, Switch Functional Exchanges /
Categories

= Accelerators Ll
(™ Functions from Mode / State
[FH Elements from Scenarie
“ Functional Chain Elements

2 Initialization from existing
diagram

= Commeon Ll
{c} Constraint
% ConstraintElement
&, Constraints
+ ", Applied Property Value Groups
(= Requirements Rl
&, Requirements
¥ Requirement Link

+ &, All Linked Requirements

X

Blm 0 =

07:16

117

LCBD] Logical Component Breakdown

= workspace - platform:/resource/teste/teste.aird/[LCBD] Ghostbuster System - Capella
File Edit Diagram MNavigate Search Project Run Window Help

N @A D

-

X

i

]
T2 Capella Project Explorer 52 = B8 %2, teste &, [LAB] Logical System & [LFBD] Root Logical Function & [LDFB] Root Logical Function & [FS] Scenario (.5% [LCBD] Ghostbuster System 2@] &, [ES] Scenario = B8
d4lEs ~ ug.ﬁ.h;h\-aﬁqmg“%q-|QQ|253% v||- [I
Select a name t find fEeaD- o
T = any character, * = any string (= Components Py
filter text
|type ilter texd ‘ Q & {L] Logical Component
> 5 dddd & Centained In
v [teste
[teste.afm (= Commen £
~ teste.aird
5 G teste

> [= Representations per category
= teste.melodymodeller

A Fast Linker 2 Xft-=08

>
ogical Architec System

Bmdm=

{c} Constraint
% ConstraintElement

%, Constraints

+ W, Applied Property Value Groups

(= Requirements
“®, Requirements
¥ Requirement Link

+ ", All Linked Requirements

w0

PHYSICAL ARCHITECTURE

Data Operational Analysis
= = I

g o6
£ S
§ i
7 | ' / d Analysis

! S - - ,
'§ '...‘ :‘_.- ' e T - ik ystem Nee alys
Z2 "-.‘ s *_‘R:-ﬂs-r;" :_qoata ‘

I it

a2 !

v H

! \

Ry < Logical Architecture
§ -
8
a
g
3
g
E Physical Architecture
<
&
E; Building Strategy

07:16

119

PHYSICAL ARCHITECTURE
CONCEPTS

* Behavior Physical Component:
and therefore carrying out
part of the of the System (for example software
component, data server, etc.);

07:16

121

* Node (or Implementation) Physical Component: Physical
Component that provides the material resources needed
for one or several Behavior Components (for example
processor, router, OS, etc.).

07:16

122

* At this level, the main concepts proposed by Arcadia are
similar to those of the Logical Architecture: Physical
Function, Functional Exchange, Physical Component,
Physical Actor, etc. However, there are some additional

concepts, notably:

07:16

123

* Physical Port: non-oriented port that belongs to an
Implementation Component (or Node). The structural
port (Component Port), on the other hand, has to belong
to a Behavior Component;

07:16

124

* Physical Link: non-oriented material connection between
Implementation Components (or Nodes). The
Component Exchange remains a connection between
Behavior Components. A Physical Link allows one or
several Component Exchanges to take place (for example
Ethernet cable, USB cable, etc.);

07:16

125

* Physical Path: organized succession of Physical Links
enabling a Component Exchange to go through several
Implementation Components (or Nodes).

07:16

126

07:16

127

§] Node Component 1

$ o Behavior Component 1

Com
e Exchgnge 2

Physical
Function 1

Functional
)=]
by Exchange 3

: Dbl Physical Link 1 '

$] Node Component 2

4 O Behavior Component 3

Physical
Function 3

Component Exchange 4

Physical
@ Function 2

D=1 Functional Exchangp 5

WHAT IS IN THE PHYSICAL
ARCHITECTURE (LA)?

=
T . "
~# Physical Architecture

“how the system will be built”

* This perspective has the same objective as the logical architecture,
except that it defines the finalized architecture ot the system, as it
should be completed and integrated. It adds the functions
required by the implementation and technical choices and reveals
the behavioral components that perform these functions. These
behavioral components are then implemented using host
implementation components that offer them the necessary
material resource.

e Defines the solution at a sufficient level of detail to specify the

developments and acquisitions of all subsglstems (or co?ponentsl

... 1o _be implemented, and to define and orientate the system
integration, verification and validation (IVV] phases.

129

G * |t is often at this level only that choices and constraints
% are introduced related to implementation and production
technologies, to existing elements to be re-used. Any
ambiguities or inaccuracies that could still exist in the
logical architecture (LA), if they did not impact its
structuring, should this time be resolved, in order to
constitute clear development contracts for the identified
components.

*PA is the privileged place of co-engineering with
subsystem engineering and software or hardware
components.

07:16

130

The main activities to be undertaken for the
A definition of the finalized PA

* to define the structuring principles of the architecture and
behavior;

*to detail and finalize the expected system behavior;

*to build and rationalize one or more possible system
architectures;

*to select, complete and justify the system architecture
retained.

07:16

131

“ Definition of the structuring principles of the
& architecture and behavior

* The major objective of the PA is to minimize complexity
through rationalizing.

* One of the most used means of rationalization consists of
reducing diversity and heterogeneity within the solution, by
searching for similarities and therefore possible architecture
invariants (sometimes called “patterns”) that can be applied
more than once in the same manner — or configurable.

* Another classic way to overcome complexity is based on the
within parts of

the architecture as separate as possible from each other.

07:16

132

“" Detail and finalization of the expected system
A behavior

* Define the expected behavior of the system, to a
enough so that each of its

components can be implemented (or selected and
purchased), without any further risk or major questioning;
this definition must of course demonstrate compliance
with constraints, especially nonfunctional constraints, by
which the system will have to abide when being used
under operational conditions.

07:16

133

07:16

134

* In particular, the finalized behavior should not necessarily
be considered as a simple refinement of that defined in
the LA. The finalization of the chosen behavior in fact
often constitutes a re-designing, which must result from
the comparison between the principle behavior of the LA,
and the implications of the principles chosen in the PA:
technological choices and adoption of standards,
previous structuring principles, etc.

07:16

135

Construction and rationalization of one or more
possible system architectures

* This step is intended to define one or more solutions reflecting the
structuring principles defined in the LA, the previous finalized
behavior, satisfying the expected non-functional constraints and
applying technology and reuse choices decided in accordance with

the structuring principles adopted.

Control syster Lifing barrier
ESyslem Operators interface s— Motion Barrier "
gencu!ion $E<omlnml _ _Tl_afk_ta_kfn_ > E Track number
T [min] = 1
GPlo(tdules command control EMaiOI incident management ok [max] -> TrackNB
E(onnl‘lol ::ls'illg:m Train passing |ge- - = = !
4§ System status management detection) the level B9 Hour
crossing » - - -3
information | g — Crossing time < [min] = 0 (HY
s e T [max] = 23 (HA
Rai way Facilizies Road facilitizs Crossin g pravention devices
Tuan fram R_oa Command Pressure Dis,
patche AP :
: Gzl:l::::::l :(':;.genq SEs $Eum'eniun E G _________ =~ @ Traffic direction
Crossing direction | & Arriving
§jflowrate EL |eaving
Raidway Crossing R A
T heuntet Gdele(tion Wetetion | = 2~ 2= 2 2 === | _Giound
§ obstacies
EPressul_e command . H .
""""" o0 This is a terminus
station, otherwise it
s Raiwa y ETnin — = - {0 Accumulat — {C} would have been
ignaling b t ‘ehicle on omman acle = - ;
aaaaaaaa :::::tli':,e: $0the track E(ontlolz §3 position necessary to spedfy
detection delection | Morth-South orot...|

- = $d Procedures command control {d System status i3 Major incident
management management
-l
: S Ccnr.vc;;cad Test the
2. traffic .
’ s critical fault

- *In the simplest cases, or in systems with

a physical or electrical dominant, the

exchange items are often simple in their
description and usage at this
engineering and modeling level. =@l
However, for more complex exchange

items, involving large numbers of

exchange contents elements, it is .. o .
desirable to be able to structure a list of
exchange items that can be extensive,

by grouping them by type of service

achieved, for example. This is the role of | o i
the concept of an interface (also mainly = == — ;’@\i::c.fm |
7 present in software design). e
136

* The PA complements this behavioral description by
way of the definition of implementation
components, or

E Control system cabinet

§d standard computer board §d High-availability computer board

\
and

System status
management

Major
G incident
management

, Which provide necessary resources for
their behavior and hardware vectors zllinks) for their

communications. It may thus consist of high-

|
performance computers, resources for digital or e
analog processing, mechanical systems, T e—
evaporators, furnaces, chemical reactors, etc. s
Ethernet cable D=8l Discretq signal cable
* Hosting oPhysmal components are themselves S Sraamncaannm
connected by physical links, reflecting the media (G aeton
that channel exchanges between behavioral rosaaeeaion | [ggveniae onfoe
components (a cabled network, a satellite link, a
pipe or a mechanical shaft, for example). CT——
* The same rationalization processes have to be :

performed for hosting physical components as for
the behavior and behavioral components, in

N compliance with the established structuring
principles.

137

07:16

138

“" Selection, completion and justification of the
A system architecture

* Finalize the choices among potential alternatives, and

* For example, the implementation resources available may not
be sufficient to support an expected behavior or associated
properties (computational load too high for a given process in
computers supporting it, temperature and pressure too hiﬁh
for a given pipe, etc.). This will lead to a redesigning of the
architecture, including a redecomposition and a different
distribution of behavioral components, or the use of other
implementation resources (more powerful computers, more
robust pipes).

%% @ Site user E Door tﬂ User inside the site
_ - Code | . .
W @ Enter the key §0 Lock block E Door panel D] Opening action to Let liaht
L] E gt @ t:roll.?gh
Blocking/unblockif (. = Glass frame
@ Turn the key 9 g €d tocking command D=& Traction Q
) I8 Blackout blinds T
@ Recognize the key D=l Blackout action Block light
@ See:iot; :;'.:i: ;he Ok E Opening/closing and view
Convert Rotation
D Rotation 1 tum ® into translation B8 Reloase
2 {E @D Close the blinds
#
C D=8 Coded key {] Dl Lock D= unlock
p - @ open the blinds
? Door locking D=l cord E Frame
@ engage the |°'§"C | D=l Engagement » Blockthe door
: De8l Disengagement when the lock
D the lock -
® 1Sengage the 1oc D=3 Translation 10mm rb is engaged
b Seek to see inside < l;t. Dl Hole 8x25x15mm g
the sike)
Handle bolts Block # Dol Hole 12¢15x15mm)
(: D=3 Translation 10mm
Door closed upholdin
d A [g Dal Engagement b
@ push the bolt D Disengagement L-h Block the door
¥ 3] @ when the bok:
&P Release the bolt Dell = picunting p‘@es with screws is engaged
o s) {3 i
Hinges
Dwll Handle / . D
D4 Rotation 1/4 tum | | 'E.Duar commaTd £ Door piveting
Dl Opening/closing . Convert a thrust or
') Enter or leave the @® convert Rotation ®tradion into rotation . .
. i . W L Lis
07:16 inta translation Mourting plates with screws
site [Dl external opening } {1
—l DR internzl opening b
139

PHYSICAL ARCHITECTURE
DIAGRAMS

Specify the dynamical behaviour of the physical

components by completing the interaction

sequences coming from the Logical
WArchitecture.The enrichment of the interaction
sequences and the identification of the new
physical interfaces are two very tight and iterative
activities.
The scenario refinement process is iterative, each [PDFB]
update on a source can be automatically [1S] Interface Function Data
propagated to the target. Scenario Flow

[PFBD]
Functional
Breakdown

Delegate each logical interface to one physical
component. Create new physical interfaces between
components

[CII] Contextual
Internal
Interface

Physical
Architecture

Initialization and automated update of the
logical functions according to the system
functions

The transition tools create a first 1-1
traceability mapping between Logical
Architecture and System Analysis. Use
dedicated traceability matrices to modify
the traceability relationships.

[PCDB] Physical
Component

Breakdown

The behavioural physical components are responsible for implementing the physical
functions. Manage these allocations using an architecture diagram and deduce
corQB'éWent exchanges implementing the functional exchanges.

Manage the deployment of behaviour components on node components and deduce
physiggl links and paths. Create dataflows scenarios to illustrate functional exchanges
between the components.

[PAB] Physical

Architecture

Enrich and details the functional breakdown with
new logical functions.

Describe the data flows between logical functions
and identify specific functional chains.

[FS] Functional
Scenario

The initialization and automated updated of
the physical actors can be automatically
performed according to logical actors.

Define the physical components. A physical
component is a physical representation of
an entity in the system(hardware, software,
firmware, personnel, facilities, data,
materials, services and processes). It is in
charge of the implementation of one or
several logical components. A physical
component can be Node or Behaviour.

STEP BY STEP EXAMPLE

07:16

143

IMPORT DECISION FROM LA

- Transition from Logical Functions

L
%“ Perform an automated transition of Logical Functions
o~

- {
el

[) Create Traceability Matrix

y Refine Physical Functions, describe Functional Exchanges

- Define Physical Components and Actors, Manage deployments

o |
'—-}.‘ !.-J Perform an automated transition of Logical Actors
=

Sl gty

¥
%ﬂ Perform an automated transitien of Logical Components
=

LA

dﬁg PCBD] Create a new Physical Component Breakdown diagram

T

PAB] Create a new Physical Architecture diagram

[;) Create a new Physical Compenent / Logical Component Matrix

p Allocate Physical Functions to Physical Components
} Delegate Logical Interfaces and create Physical Interfaces

 Enrich Physical Scenarios

L

- ¢
el

T?? [15] Create a new Interface Scenario

)
'\%“ Perferm an autemnated transition of Logical Architecture Capabilities
o, ~

%“ Execute a global refinement of all Logical Capabilities and Scenarios
o~

ety

LTy

ity

& uf

iy

PCBD] Component Breakdown

= workspace - platform:/resource/teste/teste.aird/[PCBD] Physical System - Capella

i

Bmdm=

- x
File Edit Diagram MNavigate Search Project Run Window Help
R e D uerec]{| |
T2 “Capella Project Explorer 37 = 0 R teste & “[PAB] Physical System I’,ﬁ *[PCBD] Physical System 2@‘1 = 0
G BES v BB P Bre-lm] & B @ % | m [[
Select a name t find fEeaD- o
T = any character, * = any string (= Components o
|typef|rtertext ‘ Q £ £F] Node PC
> 5 dddd {E] Behavior PC
v [teste
[testetm fContamed In
w *teste.aird = Common @0
v gl teste

> £ Operational Analysis

> HF System Analysis

» 1 Logical Architecture

> Ef Physical Architecture

> £ EPBS Architecture
> [Representations per category
= teste.melodymodeller

{c} Constraint
% ConstraintElement
&, Constraints

+ W, Applied Property Value Groups

[Requirements 45
“®, Requirements
~¥ Requirement Link

+ ", All Linked Requirements

A Fast Linker 2 Xft-=08

07:16

144 <

>
4F] teste:teste::Physical Architecture:Physical System

g-ETMufZSMM

[PAB]| Physical Architecture

INavaR

= workspace - platform:/resource/teste/teste.aird/[PAB] Physical System - Capella

Eile Edit Diagram Mavigate Search Project Run Window Help

N-BR & ~iE -

Ta *Capella Project Explorer 532 = 0 R teste & “[PAB] Physical System I | & °[PCBD] Physical System
-

RN C -

[t | 5 |
= B8

L 110% | @ % Palette B
freas-Xa-

% B¢l ac@-

Select a name to find
T = any character, * = any string

§ Ghostbuster System

(= Node Compoenents Ll
filter text & 7
[type fiter tex A & + §F] Node PC
5 dddd A 4] Catching Team + §FA Physical Actor
v =5 teste

[teste.afm §horiver
v [*teste.aird

v gl teste § Telephonist Scream
1 Operational Analysis -}

I System Analysis {d catiing Group
Logical Architecture
~ 3 Physical Architecture
~ [Physical Functions
w Root Physical Function
@ Identify a Ghost

D=l Physical Link

[Physical Port

Dif] Position A5 Component Port Allocation

i catehers %] Manage Node PCs Deployment
&, ModePCs
&, Actors

+ ", Deployed PCs

+ W, Physical Links

D] Transportation

§ g Driving Group

@) Drive the team

§ Catching Group

@ Receive a Call

® Callfor Help ® fhrrv.; in ® SEZr;h f{)r %, Component Port Allacations

. e Place o5
) Clean Mess Dl Catching Order [Behaviour Components w0
&) Reopen

@ Receive a Call
(&) Deliver a ghost Catched
@ Catch Ghost

+ F] Deploy Behavior PC
+» Dl Component Exchange

+ 2] In Flow Port
@ Drive the team Dl ghdstleatened] Manage Behavior PCs
& Process Catching Order Deployment
@ Arrive in the Place

Deliver a + ", Behavior PCs
@ Search for Ghost

® Receive

ghost Payment
@ Receive Payment Catched rn + %, Deployed PCs
@ Pay for the Service il Al “®, Component Exchanges /
Delegations
I t S 9
@ nspect Service o o
(= Capabilities (= Functions £l
(5 Interfaces \ . + @ Physical Function
(= Data Dol visuzlzation
%8 Physical Context . » D Functional Exchange
< T Rkt e > Eﬂghostﬁ(zhed As Port Allocation
ﬁ]owner LT tened info] Manage Function Allocation
A Fast Linker 53 *= B8 » w, Allocated Functions
{5 ovrer e = %8, Functional Chains
wner Behavior ; Mdneyr
- } Delvalug DI Migney + “w_ Functional Exchanges
Inspect Service Valug @ the s, Port Allocations
Service
Mohey
D] Clean [Request Mofney Transfer
C
@ Call for Help
Clzan club clean
Reopen
07:16 ® e B
= Accelerators

= (= Common
145

(= Requirements
4F] testenteste:Physical Architecture:Physical System 457M of 2305M [T

i

Review of Component Breakdown

= workspace - platform:/resource/teste/teste.aird/[PCBD] Physical System - Capella - x
File Edit Diagram MNavigate Search Project Run Window Help

TP [ascerecs] | 5 |

Ta *Capella Project Explorer 532 = & *[PAB] Physical System & “[PCBD] Physical System £ = 8

Blm 0 =

fY¥lES v R |F e e av| @B Qa[T v m b
Select a name to find
T = any character, * = any string = &C & -
= Components
Liypefier tect bl Ghostbu £F] Node PC
b dddd A ster §F] Behavior PC
v =5 teste
[teste.sfm Sys‘[em & Centained In
v [*teste.aird (= Common <
v teste {c} Constraint
£ Operational Analysis ~% ConstraintElement
HF System Analysis
7 Logical Architecture s, Constraints
~ 3 Physical Architecture + %, Applied Property Value Groups
~ [Physical Functions & Requirements)
w Root Physical Function _=
@ |dentify a Ghost s, Requirements
(&) Call for Help -~ Requirement Link
@ Clean Mess + Y, All Linked Requirements
&) Reopen
@& Receive a Call Owner E Calling E Telephon = Catching
® Deliver a ghost Catched Behavior Group ist Team
@ Catch Ghost
@ Drive the team
& Process Catching Order
@ Arrive in the Place
@ Search for Ghost
&) Receive Payment
(& Pay for the Service
@ Inspect Service
(= Capabilities
= Interfaces
(= Data
%0, Physical Context .
7 SRt) E] Catchers E] Driver
A Fast Linker 33 » =0

Catching Driving
#E] &F]

Group Group

07:16

146

4F] testenteste:Physical Architecture:Physical System A42M of 2310M [T

[FS] Functional Exchange

= workspace - platform:/resource/teste/teste.aird/[F5] Scenario - Capella - x

File Edit Diagram MNavigate Search Project Run Window Help

TP [ascerecs] | 5 |

Ta *Capella Project Explorer 532 = B8 %2, “teste & “[PFBD] Root Physical Function & *[PDFB] Root Physical Function & °[F5] Scenario B3 = 8
GoES v RrEB|F B me| @] @ G| | m Dpalette D

Select a name to find Drive the team Process Catching Order Receive a Call Leem-

T = any character, * = any string NoA -
|typeﬁ|ter text (S (= Scenarios ... <
=5 dddd A . @) Physical

v [teste Function
[teste.afm s, Functions
v [£ *testeaird . Process . = Functional
v 0 teste —1 Drive the team —1 Catching Ord —1 Receive a Call Exchange
1 Operational Analysis atching Urder with return
HF System Analysis branch

Logical Architecture —* Functional

@ Drive the team

& Process Catching Order
@ Arrive in the Place

@ Search for Ghost

&) Receive Payment

(& Pay for the Service

I I
~ 3 Physical Architecture | ! Exchange
~ [Physical Functions | I T Reference
~ Root Physical Function I I ElLoop
@ Identify a Ghost 1 1 .
@ Call for Help | | Catching Order [0perand
& Clean Mess | 8, Involved
@) Reopen | B State / Mode
@ Receive a Call | 1 Duration
(&) Deliver a ghost Catched | s, Exchange
@ Catch Ghost Context
I
I

Position = Common

{c} Constraint
> Constraint...

s, Constraints

@ Inspect Service \G‘ﬁip“::y
& [PDFB] Root Physical Fu v Valupe
& [PFBD] Root Physical Fu Groups
(= Capabilities -
R
(= Interfaces SR
— e e s, Requireme...
< >
3 Requirement
= Link
A Fast Linker 33 =]
. s, All Linked
Requireme...

07:16

147

[testerteste:Physical Architecture:Capabilities: Capability:Scenario] 388M of 2303M U:

= workspace - platform:/resource/teste/teste.aird/[PFBD] Root Physical Function - Capella

File Edit Diagram Navigate

H-BRivV-ierD -

Tz *Capella Project Explorer 37

Search Project

T olEY
Select a name to find
T = any character, * = any string

|typeﬁ|ter text Q & 7
Identify Call for Clean
= dddd S ® ; Chost ® Help @ () Reopen
v I teste

[teste.afm
v [*teste.aird
v gl teste
1 Operational Analysis
HF System Analysis
Logical Architecture
~ 3 Physical Architecture
~ [Physical Functions
w Root Physical Function
@ Identify a Ghost
(&) Call for Help
@ Clean Mess
&) Reopen
@ Receive a Call
(&) Deliver a ghost Catched
@ Catch Ghost
@ Drive the team
& Process Catching Order
@ Arrive in the Place
@ Search for Ghost
&) Receive Payment
(& Pay for the Service
@ Inspect Service
& [PFED] Root Physical Fu
(= Capabilities
(= Interfaces

A Fast Linker I3 = =

07:16

148

Run Window Help

B % *teste & “[PFBD] Root Physical Function 3

v Aemiv|e Bre-ledac @@

e 100% | m

BD] Functional Breakdown

@ Receive

a Call

Deliver a
ghost
Catched

Catch
® Ghost

Drive the
© team

Process
IF) Catching
Order

Arrive in
® the Place

Search
® for Ghost|

testentesten:Physical Architecture::Physical Functions:Root Physical Function

-
i1
= 8
. Palette [
z ®EJ- N -
= Functions Ll
® §:;rf.§| Patif:' ® Igesi?::et (@) Physical Function
senice + (X1 Duplicate

& Centained In
= Commeon Ll

{c} Constraint

% ConstraintElement

“s, Constraints
+ “w, Applied Property Value Groups
[Requirements 45

“®, Requirements
~¥ Requirement Link
+ ", All Linked Requirements

369M of 2310M U:

X

Blm 0 =

[PDFB] Physical Funct

= workspace - platform:/resource/teste/teste.aird/[PDFB] Root Physical Function - Capella

File Edit Diagram MNavigate Search Project Run Window Help
NrERi e -
Ta *Capella Project Explorer 532 = 0 2, “teste & “[PFBD] Root Physical Function & “[PDFB] Root Physical Function I

f¥lER v R-B-|F Bre-(md A @

12 | m
Select a name to find
T = any character, * = any string

(&) Search for Ghost

|type filter text

= dddd A
v [teste
[teste.afm
v [*teste.aird
v gl teste
1 Operational Analysis
HF System Analysis
Logical Architecture
~ 3 Physical Architecture
~ [Physical Functions
w Root Physical Function
@ Identify a Ghost
(&) Call for Help
@ Clean Mess
&) Reopen
@ Receive a Call
(&) Deliver a ghost Catched
@ Catch Ghost
@ Drive the team
& Process Catching Order
@ Arrive in the Place \
@ Search for Ghost
&) Receive Payment
(& Pay for the Service
@ Inspect Service
& [PDFB] Root Physical Fu
& [PFBD] Root Physical Fu

ghostondup——————— PaICall f
@ Call for Help

@ Identifya Ghost

@ Catch Ghost Deliver a ghost Catched

(= Capabilities

(= Interfaces

— e M
< >
A Fast Linker 33 » =0

07:16

149

testentesten:Physical Architecture::Physical Functions:Root Physical Function

r help,————] Catching Order

Defl ghost catched, Defl ghost catched g

ional Data Flow

(@) Receive a Call Process Catching Order (@D Drive the team

@) Reopen I

@ Clean Mess

(&) Receive Payment

355M of 2274M

@D Arrive in the Place

o:

-
__Culck Access s |
= 8
b
= Functions Ll

+ (@) Physical Function
@) Actor Function

» DA Functional Exchange
&, Functions

+ & Functional Exchanges
&, Functional Chains

“®, Switch Functional Exchanges /
Categories

= Accelerators Ll
(™ Functions from Mode / State
[FH Elements from Scenarie
“ Functional Chain Elements

=) Initialization from existing
diagram

= Commeon Ll
{c} Constraint
% ConstraintElement
&, Constraints
+ ", Applied Property Value Groups
(= Requirements Rl
&, Requirements
¥ Requirement Link

+ &, All Linked Requirements

X

Blm 0 =

EPBS (END PRODUCT
BREAKDOWN STRUCTURE) AND
INTEGRATION CONTRACTS

Operational Analysis

© S ‘

= Va e

3 y

c ! %

2 R SO — g 12 System Need Analysis
2 Y Ao ‘

Logical Architecture

Physical Architecture

"
Building Strategy

Solution Architectural Design

07:16

151

EPBS CONCEPTS

"'3.\1.s g:
—_—
A~

07:16

153

~ *COTS Cl: component off the shelf

configuration item.

* CS Cl: computer software
configuration item;

* HW Cl: hardware configuration item;

* Interface ClI: Interface Configuration
ltem

* NDI Cl: non-developed configuration
item;

* Prime Item Cl: decomposable
configuration item;

* System Cl: system-type configuration
item;

= EPBS Elernents
gCI COTS
8L S
LI HW
3C1| Interface
SC1 MO
3CI] Prime [tem
8CI) System

Manage Realized Physical
Artifacts

“w, Configuration ltems

E

& CONFIGURATION ITEMS

* The first one, CSCI 1, is a software
Configuration Item, carrying out
Behavior Component 1.

* The second item, HWCI 2, is a Bl LIRS
material Configuration Item, * -
. Behavior L=t Node
carrying out Node Component 1, as T component 1 prysical ik 1|) comnen 4
well as Physical Link 1.

 The third, COTSCI 3, is an off the

§_]ICOTSCI) COTSCI 3

shelf Configuration Item, carrying CImoic NDicr

out both Node Component 2 as O
well as Behavior Component 3. T i

* Finally, the fourth, NDICI 4 is a non- B componnt
developed Configuration Item,

carrying out Behavior Component
07:16 2.

154

HOW TO CREATE

07:16

156

“What is expected of each component, and the conditions
of its integration into the system”.

* Being the final stage of system design strictly speaking,

this definition of the Product Building Strategy (BS)
prepares later development, implementation, production,
acquisition stages of subsystems or components
identified in the physical architecture, and their

integration, up to the qualification of the system in an
operational environment.

* This level aims to deduce, from the Physical Architecture,
the conditions that each Component must satisfy to

comply with the constraints and choice of design of the
architecture identified in the previous phases (

). The
Physical Components are often grouped into larger

Configuration Items that are easier to manage in terms of
industrial organization and responsibilities.

07:16

157

-+~ 1he main activities to carry out for the definition
£y of development, acquisition and integration
contracts are the following:
*to define the product breakdown structure;

* to finalize the development contracts of components to
be implemented;

* to consolidate the definition of components to be
acquired;

* to define the integration, verification and validation
strategy and processes.

07:16

158

07:16

159

Definition of the product breakdown structure

[_ @ [SystemC]) Control system |
."‘.

* The product breakdown structure lists @ — —=—

the set of all of the concrete elements, @ CoEesce e
to be created or acquired, constitutin gi——— =
the system as previously defined, an .
that will be the subject of the integration | W———
phase. s
* Each item will have to be managed as e
part of configurations in order to identify | = s
Its configuration state: its version, its S T [
parameters or potential adaptation, etc.,
In each of the system definitions to |7 g <o
which it contributes. These elements are - T
part of the product breakdown structure. — :
l 0 corscy | e
| T frterfacecd Cabies |

%J@

* Finalization of development contracts of
components to be implemented

* The development technical contract of each component
describes what is expected of its supplier by the system
engineering team, to satisfy the definition of the physical
architecture produced and to secure later integration
validation verification stages.

*In principle, compliance with this contract should ensure
that the IVV of the system will be performed without
problem, and that functional as well as nonfunctional
needs will be satisfied.

07:16

160

07:16

161

 the functions (or services)
* interfaces with its environment (other

components, actors external to the
system)

the expected dynamic behavior, within
the component and at its boundaries
(shown by functional chains, scenarios,
states machines, etc.)

the different versions of the
component to be delivered throughout
the IVV

the expectations from the IVV specific
to this component may also be

requested in the form of scenarios or
functional chains to be demonstrated

interfaces with the host component in
which it is inserted

 the amount of resources of this host

component and communications media
that are allocated thereto

* the potential contribution of the

component to the global data model of
the system

* the non-functional constraints to

which it will have to comply

* the possible product line constraints

(optional parts of services and
associated conditions)

eventually, an extract of the conditions
of operational service focused on the
context of the component

 textual requirements, allocated to the

component, and its accompanying
definition above

07:16

162

* links, ports or hardware
interfaces with its
environment (other hosting
resource components, actors
external to the system)

* links and interfaces with the
host component containing it

* the resources that it has to
make available to behavioral
components

* the associated environmental
and regulatory characteristics

* textual requirements

* the constraints of the
product line

~ Consolidation of the definition of components to
be acquired

%4@

* The definition of the previous contract should in principle
also apply to components that are not meant to be
produced but acquired, and this can also apply to
preexisting off-the-shelf components.

* |t is strongly recommended to give as much importance
to the analysis of existing components (acquired or
reused) as to others, following the previous approach,
most especially in the physical architecture.

07:16

163

>4 Definition of the IVV strategy

*The IVV strategy defines the order in which operational
and system capabilities will be delivered and verified,
the order in which components and their functions will be
integrated and tested, and the conditions to achieve this:
namely, the nature of verification, the content of testing
campaigns and required test means and testbeds.

*The nature of the verifications demonstrating the
adequacy of the system or product with the need is often
characterized by the acronym IADT, for Inspection,
Analysis, Demonstration and Testing.

07:16

164

aﬁlg * Demonstrations and tests will bring forward the demand

exerted on the system by scenarios that will rely on those
described in the model; the expected behaviors that the IVV
will have to verify will be partially characterized by this same
model, particularly by following the functional chains and the
behavioral description that it comprises; similarly, the model
provides invaluable help to the investigation, analysis of
identified defects and their localization.

* In a number of cases, the optimization of the IVV will require
feedback into the architecture design in order to make it
more suitable for stimulating, observing and analyzing the
functioning, but also for the progressiveness of tests or for
facilitating the localization and containment of errors and
defects.

07:16

EPBS DIAGRAMS

[CIBD]
Configuration
Item Breakdown

Initialization and automated update of
the EPBS Architecture according to the
Physical Architecture model. Define -
additional Configuration Items if
necessary

[EAB] EPBS

Architecture

07:16

167

* NOTE — This level is much lower than the four previous
ones, in terms of concepts, diagrams and methodological
activities. In certain recent Arcadia presentations, it is no
longer even represented as an engineering level, but
rather as an “industrial organization” viewpoint on
physical architecture.

07:16

168

STEP BY STEP EXAMPLE

Moving from the Physical level to the EPBS level

* This level aims to use the Physical
Architecture to deduce the conditions
that each component must fulfill to
satisfy the design constraints and

. . . P . F22, |
architecture choices, identified in the a9 L A/ —E/~f /
previous phases (“what is expected of) TN
the provider of each component”). & _ax 4

* The Physical Components are often ' ' Viewpoints

gathered into Configuration Items that
are larger and more practical to
manage, in terms o industrial

Buy Sub,-contract Make Make Sub-contract

organization and responsibilities. . . 21,
F22, / F1 /
* The classic problem consists of asking —Q'u Y C;l v/ oy
ourselves whether we are going to . & g/

one, buy it off the sheif, or subcontract
07:16 it out, etc.

170

From the PAB of the System

E GhostBuster System

E Catching Team

E Driver
8 o Oriver
1
-)
{0 Telephonist J D= Location Movement
. Listen the Drive to . T D= Transgortation
§ o Telephonist desired the . -
: - D=gl Position
locatio Location 1
Receive a Place an] "J
Call Order L]
|~
Dbl Talkc
O Positicn Request 1
E Catgher /_‘
-~ T
E Catches ~
, ,
D=l Position Remane
L -~ Equipment from
! = the Transport
D Scream Frocess
-) Catching
=8 Order Order
=
D Catching Order -
Search Catch Deliver 2 Receive
for Ghost Ghost CiT;s;d Payment
07:16

L

171

= workspace - platform:/resource/teste/teste.aird/[EAB] System - Capella

File Edit Diagram Navigate

O-BRiy- e~

Ta *Capella Project Explarer &7 = O
=% -
Select a name to find
T = any character, * = any string
Qe
v [teste

[teste.afm
~ [“teste.aird
v) teste
1 Operational Analysis
£} System Analysis
f Logical Architecture
4 Physical Architecture
~ 3 EPBS Architecture
(= Capabilities
g EPBS Context
[SystemnCl] System
B Mew Coenfiguration Iter
[Representations per categary
= teste.melodymodeller

A Fast Linker 33

07:16

Message

172

4E1) testerteste:EPBS Architecture:System

Search Project Run

Window Help

% “teste &% “[PAB] Physical System &, “[EAB] System E3I

Br@iv|f|O-w-|meg| & @~

[EAB]| EPBS Architecture

@Telephonist

\:’Telephonist Voice

§ | Hwen Hwel 2

§ Jicsencsait

§] [NDIC NDICI 1

I:’Team Ears
I:’Team voice

@ Catcher

Talk

@ Driver

Level

Ruleid

Rule set

Qrigin Resource

Time

S30M of 2111M

MEEl&EBELa]lel]l

a:

-

__CulckAccezz @fl

System

& Manage Realized Physical
Artifacts

“®, Configuration ltems
(= Common

{c} Constraint

% ConstraintElement

&, Constraints

+ W, Applied Property Value Groups

X

B
[

[CIBD] Configuration Items Breakdown

= workspace - platform:/resource/teste/teste.aird/[CIBD] System - Capella
File Edit Diagram MNavigate Search Project Run Window Help
NrERi e -
Ta *Capella Project Explorer 532 = O & “[PAB] Physical System

5. a s
8% ~ |8~ Bi~| £

& “[EAB] System % “teste & “[CIBD] System i3

e |205% | m

v et & B

Select a name to find
any character, * = any string

filter text L&

v [teste
[teste.afm
~ [8] “teste.aird
~] teste
1 Operational Analysis
£} System Analysis
f Logical Architecture
4 Physical Architecture
~ 3 EPBS Architecture
(= Capabilities
g EPBS Context
[SystemnCl] System
B Mew Coenfiguration Iter
[Representations per categary
= teste.melodymodeller

7

ﬂ [CSd]

CSCl 6

ﬁ] [HWCI]

HWCI 2

@] [CsC

cscl 1

A8

< >
A Fast Linker 33 =0
sE [NDICI]
NDICI 1
i- Information 33 & -
07 . 16 Message - Level Ruleid Rule set Qrigin Resource Time

173

4E1] testenteste:EPBS Architecture:System 252M of 2139M

a:

- x
B3
= 8
. Palette [
CRCE J-N# -
(= Components %
System
& Contained In
(= Common @

{c} Constraint

¥ ConstraintElement
&, Constraints
+ ", Applied Property Value Groups

= workspace - platform:/resource/teste/teste.aird/New Configuration ltems - Physical Artifacts - Capella
File Edit Mavigate Search Project DTable Run Window Help
% - R SR i - -

Tz Capella Project Explorer &% = B & [PAB] Physical System &, [EAB] System 2 teste
-

[CSCI CSCI6
[HWCI] HWCI 2 X
4L1] [CSCI) CSCI 1

4C1] [NDICI] NDICI 1

Select a name to find
? = any character, * = any string

|fi|tertExt | O, £

v (23 teste
[teste.afm
v [teste.aird
v) teste
H Operational Analysis
H System Analysis
£ Logical Architecture
£} Physical Architecture
~ Ff EPBS Architecture
(= Capabilities
%2, EPBS Context
[SystemCl] System
Mew Configuration [ter
= Representations per category
= testemelodymodeller

A Fast Linker £32 =8

i= Information (2 3r

07:16

174

& [CIBD] System

X

+ Tracea bility Matrix

B8 Mew Configuration ltems - Physical Artifacts &7

§F] Gh.. D=1 Scr.. £F] Tel. |:| Tel.. $P] Cat.. D= Tra.. D=2 Talk 4F] Dri.

Level Ruleid Rule set

O ee1

] eP2 £ Cat. [] PP1

Origin

O Tea. [Tea.. §E] Tel.

Resource Time

4F] Dri..

§F] Cat..

312M of 2159M

o

X

[Qucercee] | a2 | [2

+—|uﬂ|$inb@

o

= 8

TRANSVERSAL MODELLING

TRANSVERSAL MODELLING TOPICS

|

MODES AND STATES

Modeling system modes, states, configurations with Arcadia and Capella: method
and tool perspectives - 27th Annual INCOSE International Symposium (IS 2017)

07:16

177

07:16

178

* The definition of the system’s expected behavior (or therefore,

of one of the elements mentioned earlier) in situations
decided from the design is captured in the form of system
modes; each mode is characterized principally by the
functional content expected of the system in this mode (as a
mnemonic, we talk of a “mode of life” to express the different
expectations, priorities and activities in a life, and a “mode of
transport” to indicate the means of travel). A mode can convey
various concepts, such as a mission or process stage, a
particular behavior required of the system, conditions of use
such as a test or maintenance mode, a training mode, etc.

A *As jts principal , \
=y mOdes, the traffic ™ Train departure [D'irpa;r:t:;ritvrzli:‘nifrlc;z)n:;t;gr;n] ™ Train arrival
control system will
naturally have the | e
modes

characterizing the
principal situations it

Departéd train information Arrived train inflormation

should manage: | ™Road traffic |

o Departing tyain information Train arrjval information
train departure,
train arrival and ‘e

road traffic.

07:16

179

*In the course of its life and use, the system also passes
through some states it undergoes (we say “What a state you
are in!” and we speak of a “state of alert or of emergency” to
indicate an unexpected situation). Most often, a state
characterizes mostly structural elements (presence or absence
of a component, availability or breakdown, integrity or lack of
it, availability of an external actor or loss of connection with it,
etc.).

* Transition from one state to another is often involuntary, and
will therefore result, for example, in a change in property for
one or more elements in the system (availability/unavailability
for example).

07:16

180

07:16

181

* The level crossing can be found in a state occupied by a
vehicle stuck on the track, or on the contrary, free (as
expressed by the states of the control system itself). This
situation is of course foreseen, but not on the initiative of
the system, so it is undergone by the system, which must
consequently react.

-+ CONFIGURATION

* To characterize the system when it is in a given mode or
state, we will define the notion of configuration: a
configuration identifies a set of model elements, of all
types (for example functions, components, exchanges,
etc.), globally involved in use of the configuration, at a
given instant. A configuration can be attached to one or
more modes and/or states.

07:16

182

7« A configuration intended to describe the expectation of a
& mode will tend to be (though not exclusively) function
dominant (capabilities, functions, exchanges, functional
chains and scenarios, etc.) to express the expected
functional content — or if it is easier to express, the
functional content not present in this mode.

* A configuration intended to describe a state may be
structural dominant (hosting physical components,
physical links, indeed behavioral components hosted on
the former, etc.), but could also include functional
aspects, depending on the nature of the states considered
(for example attack or failure scenarios, from a security
viewpoint).

07:16

183

slE

T

* [t is therefore necessary to define the combination of these
states and modes to be able to study their consequences. For
this, we will use the notion of a situation of superposition. A
situation is defined as a logical combination of modes and
states (for example (model AND statel) OR (mode2 AND
(state2 OR state3)), which would express the superposition of
modes and states likely to occur at a given instant.

* A scenario can mention the transition from one situation of
superposition to another, in the same way as it will mention
changes of states and modes in the course of time.

07:16

184

07:16

185

* EXAMPLE OF SITUATIONS

Mission Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6
System Mode 1 | Mode 2 Mode 3 Mode 4 Mode 2 Mode 3
Mode A Mode B Mode C | Mode A Mode C Mode A
Subsystems Mode X Mode Y Mode Z ModeX Mode Y
Mode | Mode J Mode | Mode J Mode | Mode J
A
Mass
—-—____.—-"-_\.
Comms

| MEANING OF STATES AND MODES

OA describe either general situations that the organization considered confronts (usually
rather states such as routine conditions, states of crisis, a situation where there is a lack of
resources, for example), or the stages of a mission, or of the organization’s normal functioning
(usually rather modes, such as an airplane’s or space launcher’s stages of flight).

SA describing the expectation on the system, as desired by the customer; they are most often
perceived and employed by the final users. In particular, they capture the different modes and
conditions of use required of the system in different situations, and feared situations, with the
minimal behavior required when facing these situations

LA the system states and modes respond this time to design choices or constraints. New modes
and states reflecting the choices of solutions can appear, which cannot be linked to those of need
analysis.

PA applied to the system, but also to each logical architecture component and to the physical
architecture components linked to it: modes and states, as well as the content of their associated
configurations, should be coherent with traceability links (between functions, between
components, between exchanges triggering transitions, etc.) between both architecture
perspectives.

186

(Modes Machine] (States Machine]

\ J \)
(Situation]
Owns
\) Owns
[*] [*]
[Ty Combines Combines Wl
7~ N
Mode \F] ["T{ State
\ A% [\ y
1 1 Requires Availability of A A
Source Target Requirps Availability of Souyce Tdrget
1.4 1.9]) 1.4 1.7
(Mode Transition] Configuration] (State Transition]
\) \ J \ J

07:16

187

-+ SUMMARY

A mode is a behavior expected of the system, a component or also an actor or
operational entity, in some chosen conditions.

* A state is a behavior undergone by the system, a component, an actor or an
operational entity, in some conditions imposed by the environment.

A transition is a change from one mode to another mode or from one state to
another state (respectively, called the transition source and transition target).

« A mode(s) machine (or respectively, state(s) machine) is a set of modes
(or, respectively, states) linked to one another by transitions. Modes and states
cannot cohabit in the same machine.

« A configuration is a set of model items that are globally available or
unavailable in a given context. A context can here be an active mode or state.

A situation is a combination of states and modes linked by Boolean operators
(of the type AND, OR, NOT), and representing the conditions of superposition of
07:16 these states and modes simultaneously at a given instant.

188

y

ADD-ON on test to aid State Analysis (VPMS

o .

A, safe vehicle approach
“\, safe pedestrian encounter in combustion configuration X
4 safe pedestrian encounter in EV configuration
4 4P Hybrid SUV
4 4F]Safety BCs
4 3P| Vehicle Proximity Notification System
4 E’ Speaker
4 @ Produce Simulated Engine Sound
Kl sound
2 alert
4 $F] Pitch Controller
[bus
» @ Compute Pitch
4F] BrakeAssist
$F] Airbags
@ Power Subsystem
4 9F]Power BCs
[#E Transmission
» 4F] PowerControlUnit
» 4F] InternalCombustionEngine X
> 4P| FuelTankAssembly X
& $P] ElectricalPowerController
& $P] Electric Motor Generator
» 4E] Differential
07:16 » 4P BatteryPack

189

€© Hybrid

€© Combustion

§] Hybrid SUV

G Safety Subsystem
§.5 Venicie Proximity Notification System

¢Combustion

@Pedestnan

D3l found

Notice

§d Pitch Controller §d Speaker
Produce
Ao det | @ simulates
Engine Sound
Power Subsystem

§ . Eiectric Motor Generator InternalCombustionEngine

@ Power tjhe motor

@ Power the motor

approaching
=R Vehicle

P2 engine sound

§] Hybrid SUV
£ safety Subsystem @FEV (Electric Vehicle)
E Venicle Proximity Notification System
Pitch Controller Speaker
E *Eprp v ‘}] Pedestrian
Compute| D alert] i
Pitch ~® Simulated Dl jound Notice
Engine Sound approaching
it i) Vehicle
£ Power Subsystem
G Electric Motor Generator {B internalCombustionEngine P4l engine sound
@ Power tjhe motor @ Power the motor

PARAMETRIC VIA CLASS

* Capella provides advanced mechanisms for modeling data
structures at a stated level of precision and for linking
them to Functional Exchanges, Component or Function
Ports, Interfaces, etc.

[P¥] Exchange ltem 2 [P¥] Exchange Item 1
' Q [Physical Quantity 1 (Unit 1)
I \
I \
Numeric Type 2
L =] Enumeration 3
¢ [1.7] \
% : N '
‘ H ciass 2 ’ ‘ H ciass 1 |
07-16 ‘ 5 property 21 : Physical Quantity 1 (Unit 1) ’ ‘ =5 property 11: Numeric Type 2 ‘ ~~ Unit 1
’ 5 property 22 : Numeric Type 2 5 property 12 : Enumeration 3

191

*There are two main
categories of concepts in
this type of diagram:

* Communication
elements: Els and
Interfaces;

* Type definitions: basic
Types, Classes, relations
between Classes.

* These two categories of
concepts are taken into
account in a division of
the CDB’s palette into
two different groups.

07:16

192

.o Palette
{ - ' A

(> Classes

(% Communication

(& Interface Package
Q Interface
+ & Event
{& Operation
D Flow
) Data
¥ Undefined Exchange Item

> Exchange ltem Element

[Manage Exchange Item Allocations

W Interface Packages
W _Interfaces

W, Exchange Items

L Classes

- > Data Package
» & Class

» [BooleanType
» Numeric Reference
o Property
& Class Operation
@ Parameter
» => Association
~=» Collection Type
W, Data Packages
W Types
W Data Values

W Relationships

» {C} Constraint

+ COMMUNICATION MECHANISMS

* EVENT: asynchronous mechanism where an event is sent
oy an element and received by one or several others;

* FLOW: flow of matter, energy, etc. or data;

* OPERATION: process carried out by an element and
invoked by another;

 SHARED DATA: data modified by an element and read by
others.

07:16

193

07:16

194

* We shall look now at the definitions of the Types
proposed by Capella: Classes, Structured Types, Simple
Types. The vocabulary used comes from UML, and the
very hame of the “Class diagram” is a direct reference to

It.

Q Class

—O Property 3 : Structured Type
—O Property 4 : Simple Type

E Structured Type

—O Property 1: Simple Type
—O Property 2 : Simple Type

Simple Type

07:16

195

* The simple Types predefined by Capella are as
follows: BooleanType, Enumeration,
NumericType, StringType and PhysicalQuantity.

e Careful, BooleanlLiteral and EnumerationLiteral
help define Boolean Type and Enumeration, while
Unit helps to define PhysicalQuantity.

e Simple types cannot have properties. If we want
to define Structured Types, the Class button in the
palette must be used, and then the Class must be
specified as primitive (tick the box Is Primitive).
The other “Primitive” Classes then play the role of
structured Types, and can in turn type the
properties of the “true” Classes.

(= Classes

(= Data Package

» & Class

- [BooleanType

T BooleanLiteral

[Enumeration

EC EnumerationLiteral
NumericType
StringType

[PhysicalQuantity

T Unit

» & Numeric Reference

—5 Property

(= Communication ©

(= Interface Package

¥ Pressure ¥ Temperature 2D Air Particles [P¥] Data Request

’ [7 + % Event »
: g 2 &3 Operation

! /I’ I,' D Flow

! ! & [Data

. f ‘,:I %] Undefined Exchange ltem
E Iél (] patarequest | ----- > Exchange Item Element

: Temperature_C (Celsius) {__o requestTime : TimeStamp J @ Manag_e Exchange ltem

: T [min] AbsoluteZero = -273 (Celsius) 75 [0..1] captureTime : TimeStamp Allocations

v % Interface Packages

Pressure_hPa (hectoPascal) ety X Interfaces
T [default] StandardAtmosphere = 1013.25 (hectoPascal) oot) Exchange Items

5 min : Minute

environmental =
conditions
3 Earth Atmosphere é’ =2 Functional Exchange
- ’ environmental | *
@ Provide conditions : Editing of the properties of an object Functional Exchange
Environmental
Conditions
L]
A fBase\\\Eh:tensions\[Management | SimpleDescription |)
]
i
I
§ 8 weather Operator ' - -
— ' Name: acquisition request
acquisition M
request Summary :

Configure Data N
® Acquisition IJT‘\
> |
weather
operator HMI Exchanged ltems : Data Request H SRR

Exchange Categories: | <undefined>

07:16 D=8l current situ

Realized Exchanges: <undefined>

196

Ending

07:16

197

* It must be noted that the method does not always have to
be top down in nature, but can also perfectly be bottom-
up, for example if we start with an existing system that is
to be worked on. The question relates more to
architectural levels than to phases or steps.

* Moreover, not all architectural levels are mandatory for all
projects. Operational Analysis, Logical Architecture and
EPBS are considered to be optional, depending on the
complexity of the system under study and the goals of the
model.

07:16

198

BACKUP

07:16

199

WHAT IS SYSML?

HISTORY OF OBJECT ORIENTED LANGUAGES
State Charts) Harel 1987
(AdalBogE:Ch \ (RDD) (00sA)

1990 Wirfs-Brock Shiaer/Mellor
Booch '91 OMT
Methodologies h u.a. OOSE |
proliferate : Jacobsen Gibson/Goldberg Coad/Yourdon
Booch '93 Eoeiin
Coleman OODA
Booch (oMT '94 N (OOSE 94 Martin/Odell
Rumbaugh
1995 OOPSLA '95
. X
Mature practice w3 omigos” (UML 0.9 SOMA (MOSES |
Graham Henderson-Seller
1997 Accepted by OMG Nov. 97 (UML 1.1 [OPEN/OML] @D
et Unified Colemanu.a. Open-Group
Standardization Proces
Accepted by ISO Okt.2000 | UML 1.3 RUP_’__OEP
Published Nov. 2000 (UML 1.4
March 2003 | UML 1.5
2005 2005(UML 2.0
Language) Executable
07:16 : 2007(_UML 2.1.2 UML Y
proliferate . [BPMN 1.1]
2008
201

SvysML 1.4

UML
UNIFIE
MODE

D

LANGL

07:16

202

AGE

LING

‘ UML 2.5 Diagram

N

Structure Diagram ‘

Behavior Diagram

i

Class Diagram -]

Object Diagram

Package Diagram

Model Diagram

i
[

‘ Compaosite Structure

Diagram

Internal Structure
Diagram

Collaboration Use
Diagram

PN A
[-

Component Diagram ——

Manifestation Diagram

W]

Deployment Diagram ——

Network Architecture
Diagram

Profile Diagram

[

UseCase Diagram

Information Flow
Diagram

Activity Diagram

I

State Machine
Diagram

Behavioral State
Machine Diagram

Protocol State
Machine Diagram

Interaction Diagram |

£\

Sequence Diagram

Communication
Diagram

Timing Diagram

Interaction Overview
Diagram

@ uml-diagrams.org

ADAPTATION OF UML TO SYSTEMIC DOMAIN

/ SysM L'S
y extensions to
\ / UML
- / /
not required \%/
by SysML . - UML reused by

(UML4SysML)

SysML —SYSTEM MODELLING LANGUAGE

1. Structure 2. Behavior

. . sS4 ABS _Actwabien Sequence [Sequence Dugmvu
bdd [package] VehicleSiructure [AES-Block Defntion (h,.)um]/ s o lnt&factlon
definition
bl cio» o cke eblocke d1:Traction I m1:Brake
Lidsary AstlLock Lidsary:: K lec — 2l sdaltms o
Elecwonic Con{volbc tro. Hydraslic state stmm TeoTraction [State Machie E'm_:mr.u
Processor Valve #
machine —
41 = t 0% mon
- activity/ | ot Prevertlockup (Actay Disyrar
54 {block] Art-LockCortroller . 2
(Inteenal Black Disgram] . function !
d1:Tractien ‘ * K
€1 mossiator ors o use Detectl oss Of e Mo detate
nterface Traction Brakingfeece
o :Brake sendAch()
Mo dulstor
req(package] VehicleSpecicasons
[Requuements Disgram-Braling Requraments) [
par|corstrantBlock] SysghilneVehichD ynamics [Pacamer: Diagram|
Vehicle Systess Braking Sebaystem LR o ¢
Specificaten Specificason o R
‘Hrakingfesce tAcceles stion
_-voﬁ'mm- stequirement « y :(‘?::,'Il.?:‘.”) (I:?"Y.:?
SteppingDistance Asti-LockP efedmance \ el Ko !)
=" 1" g="337" B
toxt*" The vehiche thall sicp o= "Brakng subsystem shal .
from 6D mph withen 150 Nt tavent wheal lockug under ol 4 ™
on 2 clean dry swrdace” ﬁv.nnr-) cond®ans”
‘Dstancek quation Velocin® quation
v = du/dt) v {0 = dvidt)
07:16 «dermveRegts . 0 .
.

204 3. Requirements 4. Parametrics

e
SysML DIAGRAM BRANCHES

A

SysML Diagram

A

I,

| Modified from UML 2

07:16

: New diagram type

205

I
Behavior : Requirement Structure
Diag ram : Diagram | Diag ram
f |
Activity Sequence State Machine Use Case Block Definition internal Block Package
Diagram Diagram Diagram Diagram Diagram Diagram Diagram
Same as UML 2 e e e

= S
= y Tpm—y
SysML
A
g
W

* |s a visual modelling language that provides
* Semantics = meaning
* Notation = representation of meaning

*|s not
* a methodology or a tool
* SysML is methodology and tool independent

07:16

206

Transition from OPM to SysML

Creating SysML Views from an OPM Model

-+~ OPM to SysML Mapping Challenge

* The mapping is “one-to-many”

* Example —a Process in OPM can be mapped in SysML to
one of the following:
* Use Case (in a Use Case Diagram)
e Operation of a block (in a Block Definition Diagram)
 Action (in an Activity Diagram)
e State transition trigger or in-state activity (in a State Machine
Diagram)
* Message (in a Sequence Diagram)

07:16

208

~ OPM-to-SysML IMPLEMENTATION - USE CASE
EXAMPLE

uc UseCases [Use Case Diagram] /

Braking

/
Brake K
Assembly R b Boosting
A_[— active <G ABS Braking } Dot g /
_____ s
Braking «ir}clude» ’:7
/ -
P -
Mechanical | | - S /”
Subsystem Boosting Dgtlgg::]g S :clnclude»
-
-
L
e Signal Set
raulic Anti Locking
Subsystem
- ABS Braking }----—-----------= Signal Detecting
Actuating «include»
Sensor Pulse Set
Subsystem -
) Actualting Driver \"'..\
\ \\"
Engi / . <c|nc|ude»‘
ngin -~
ContrgoIUn AN \—“&
5
by
N
«include» AntiLocking
A
Power AN
Management A
System N
N

\/elocity

l high l zero

d

Actualting

07:16

209

ACTIVITY/SEQUENCE DIAGRAM EXAMPLE

act Anti Locking [Anti Locking] /

ActivityInitial

Signal Set

Signal Conv erting
oo

< ABS
Anti Locking

Signal Processing
o0
Converted
Signal Set

Signal
Processing

Wheel Lock
Detectingo_.o

Wheel Lock
Detecting

[else]

Pulse Set
Generating

[Wheel Lock Is Detected? isyes]
Pulse Set
Generatings_ o
uating
eel Signal

©®
07:16

ActivityFinal

210

STATE MACHINE DIAGRAM EXAMPLE

stm StateMachines [Status of Order] /

ordered

Invenory Empty :

hool
Order [true j)oefnfalse)

[

Receipt

Order Paying
And Supplying

Product completed(Order Paying)

] p

Status

supplied

completed(Order Supplying)

_

supplied

07:16

211

e
& REQUIREMENTS

STKH_Need 001 Cargo

(origin | (destination)

[Airborne Payload Transportation]
{A;

Cargo Weight

Cargo
_Transporting

Marketing_Req_001
[Airborne Cargo Transportation]

4
A

Al rcraft.
STKH_Need_001 is Airborne Payload Transportation.

Cargo Transporting consumes STKH_Need_ 001.
Cargo Transporting yields Marketing_Req_001.
Marketing_Req_001 is Airborne Cargo Transportation.
Marketing_Req_001 exhibits Aircraft.
Cargo Transporting requires Aircraft.
Aircraft is physical.
Cargo Transporting changes Cargo from origin to destination.

STKH_Need_001 exhibits Marketing_Req_001, as well as Cargo Transporting.
Cargo Transporting exhibits Marketing_Req_001.

Cargo is physical.
Cargo can be origin or destination.
Cargo exhibits Cargo Weight.
Cargo consists of Passenger, Baggage, Store, and Crew.
07:16 Passenger is physical.
Baggage is physical.
Store is physical.

212 Crew is physical.

Store '

-

Function Defining
Requirements Identifying
Requirements Allocating

Traceability

Configuration
management

req Detection Performance)

wtestCaser
Low SNR Target
Without
Interference

«requirements S D
System Sensor1 Detection
Performance Performance
A X
! «deriveReqts .
H «COpy» :
o «requirements & aMisc»
""" Y'e'n"y""') Sensor2 Detection *--?'r'af?-.-" Customer
Performance Contract
) [}
T« féfino» sesatisfy»
: «Blocks
Signal
0 Processor

SysML & ARCADIA

https://polarsys.org/capella/arcadia_capella_sysml tool.html

07:16

214

Positioning

Method

SysML is a standard and a general-purpose
modeling language for modeling systems.
SysML provides very rich and advanced
expression means covering a very broad
spectrum of applications, spanning from
high-level architecture modeling to
detailed design at the frontier of
simulation.

SysML is not associated to a particular
method even though several engineering
methods can be followed. As such, SysML
only provides a vocabulary, but it does not
specify when to use one concept or
another, how to organize models, etc.

Inspired by SysML concepts, the Arcadia/Capella
solution focuses on the design of systems architectures.
For the sake of an easier learning curve and because of
the precise scope addressed by Arcadia/Capella, the
expression means are sometimes reduced compared to
SysML. The ultimate goal of Arcadia/Capella is to have
systems engineers embrace the cultural change of
MBSE rather than having modeling “experts” owning
the model on behalf of systems engineers. Therefore,
Arcadia/Capella are strongly driven by the current
practices and concerns of system engineering
practitioners.

The Arcadia method enforces an approach structured
on different engineering perspectives establishing a
clear separation between system context and need
modeling (operational need analysis and system need
analysis) and solution modeling (logical and physical
architectures), in accordance with the IEEE 1220
standard and covering parts of ISO/IEC/IEEE 15288.

=
ﬁl _ SysML Arcadia/Capella

Language

Diagrams

07:16

215

Technically, the SysML language itself is
defined as an extension of the Unified
Modeling Language (UML). Both UML and
SysML are general-purpose languages
targeting wide spectrums of engineering
domains and are relying on software-
originated engineering paradigms using
types, inheritance, etc.

SysML includes diagrams inherited from

UML2 and adds new diagrams:

e 4 diagrams are the same as UML2
diagrams (Sequence, State Machine,
Use Case and Package);

3 diagrams are extensions of UML2
diagrams (Activity, Block definition and
Internal Block);

e 2 diagrams are new diagram types
(Requirement and Parametric).

The Arcadia concepts are mostly similar to the
UML/SysML standard (about 75%) and the NATO
Architecture Framework (NAF) standard (5%).
Interoperability with SysML tools is possible using ad-
hoc imports/exports. Because of the focus on
architectural design, some of the SysML concepts have
been simplified or specialized in order to better match
the concepts system engineering practitioners already
use in their engineering documents and assets. This is
the case of the concepts related to functional analysis
for instance.

Arcadia method is supported by various kinds of
diagrams largely inspired by UML and SysML.:

e Architecture diagrams;

e Dataflows diagrams;

* Functional chains diagrams;

e Sequence diagrams;

* Tree diagrams;

* Mode and States diagrams;

* Classes and Interfaces diagrams.

07:16

216

Similarities and equivalences

~# Block Definition Diagram

Arcadia/Capella

What is performed through Block Definition Diagrams in SysML is
achieved in Arcadia through two kinds of diagrams:

07:16

218

SysML

The Block Definition Diagram in SysML defines features of blocks and
relationships between blocks such as associations, generalizations, and

dependencies. It captures the definition of blocks in terms of properties and

operations, and relationships such as a system hierarchy or a system

classification tree.

[E

Vi rera
ot oo L0 Svren

Y L}

Cedoct oy cxocts teza s s
Camera powwr Batton Rasrparal Tappare Mamory card Noerary Ivagn Comrone I i’”mul l,“
otk
Camera Body
o -—
LC0 Soeen &
Harvscabia cavgoerts
Ostcal fosarth
amecar ebiazk, bzt
*Deoraal Flasy Tatwrew! tlanh
stacky — rs T ehaeca
Teppens 3
Tam TF
ol c-mam i
;
‘I
) iumn;
Shuster 1T, Pareescter 08 Panmce o Gy Staor m
mm o] | Shitier T 5]

“M_h

e Ty, Earpansaten | CXPOSURT COUPDIGATON)
~Dapassre LAt agel mazeir nnv‘ps e
Frde S OTTIG UCOE, moyie - SHOATHG STYIE

[TCaRste Raguee shirtee mlanse 5 lm’rﬂﬁ(lrl.rr\l

Sensor TF

o

A
=5as0r Conmanal expasLre - Exposyre Trienge, tineiare Tnestave |

Smaamn '
VPR Comngs o wisinaty . FLASH NTERSITY)

« Component Breakdown Diagrams show the component hierarchy
through a graphical tree.

= Component Interface Diagrams show composition relationships

between components through graphical containment and
relationships between components and interfaces through ports.

Component properties are not displayed graphically.

(Kl campes tiady

O -qmw wmn e,
s »n TN

(]
SR D St
FIDN o

07:16

219

Internal Block Diagram

SysML

The Internal Block Diagram in SysML captures the internal structure of a block

in terms of properties and connectors between properties.

Ll [Bot] Lurmea By | o Lurra paea |

|
= Optical Axnambly

“Ton pansl rl.:'.lrh Sem R
=~ :image Caniraly

Arcadia/Capella
Arcadia Architecture Diagrams describe the assembly of components in
terms of internal breakdown and connections.

I Pleniainy carrd LD arrman
rerreirethon ich e
e razuibvkes b
B . B dwiw wocamape proiacod
= "-\-___ T

el dww aoteange proas:z|

I pctmachoard

Note: See the dedicated section in Differences to understand how the concepts
of parts, blocks and cardinalities are managed in Capella.

e e

Activity Diagram

St

SysML Arcadia/Capella
The Activity Diagram is a behavior diagram representing the flow of control Capella functions naturally map to SysML activities/actions. However,
and objects between activities. while SysML Activity Diagrams are primarily intended to specify the

control flows between activities, Capella Dataflows Diagrams only present
the dependencies between functions with absolutely no semantics of
control. The rationale for this choice is explained in this dedicated paper.

oy L e S e v

e
iy
e
[P S v | Br i
e L
L B EE

s .

Allocating functions to components in Capella is similar to allocating
actions to partitions representing blocks in SysML. Capella Architecture
Diagrams ressemble to a mapping of SysML Activity Diagrams onto
Internal Block Diagrams.

(e
Lr
i
i
II.
=

i T . N L:_ ml e :':: i — |I

p— +—J o | The following is a Capella Architecture Diagram voluntarily made similar to
_— . 4 a SysML Activity Diagram where actions would be displayed in vertical

F J Lpmmm_ -.I |': — | e - | L i ,_j‘-'"'| parl.'iﬁﬂns.

[[T Clrea wawed

o m et

= =TT

07:16

220

Sequence Diagram

SysML Arcadia/Capella
Sequence Diagrams describe the interaction information with a focus on the The Capella underlying constructs of Sequence Diagrams are strictly
time sequence. mapped onto SysML ones. The differences reside in the variety of elements

This diagram represents the sending and receiving of messages between the that can be referenced in 4 consistent manner by kfelines and sequence

interacting entities called lifelines, where time is represented along the vertical messages.

axis. The sequence diagrams can represent highly complex interactions with In the following figure, lifelines represent components (blocks in SysML)
special constructs to represent various types of control logic, reference and sequence messages represent dependencies existing between the
interactions on other sequence diagrams, and decomposition of lifelines into functions (actions/activities in SysML) respectively allocated to source and
their constituent parts. target components.

twnnnarion | !

B T T L LT T - N N N N N il
o | 5 | ' 5 : :
H L : 1 1

= rebcked Iyt

'
1

Ly . i | % e Bty
H | | ' | '

] H i | ! | | | T

| D e | N 1 h | mewewsr L
' ' H '
| 1 '
i | 1
| | '
'

|

 Everig ek

o . I |;|::.-a.ma.= i | | 1 i E‘
0 L O N
v "L - """ U S L |

In the next Sequence Diagram lifelines represent functions

221 . I I ' (actions/activities in SysML) and sequence messages represent dataflows
hohuaan thaca functinne

State Machine Diagram

SysML Arcadia/Capella
The State Machine Diagram is a behavior diagram describing the state The Modes and States Machines in Capella are extremely close to SysML.
transitions and actions that a system or its parts perform in response to The constructs are the same, but Capella adds a bit of semantics
events. It is used for representing behavior as the state history of an object in (difference between modes and states, articulation with functional
terms of its transitions and states. analysis and interfaces).
ldie [Igle

% %43@

shooting request
shooting reguest

' N\
Shooting] (™) Shooting
Focusing] Processing S
entry / Focus image entry / Process image [#4) Focusing (¥4 Processing
exit/ Store image =
H 7 L — ry / Focus image entry / Process image
it / Store image
Focused } Focus is obtained
entry / Detect mage =
Focus is obiained RAW image is produced (™ Focused
eniry / Detect image
e — RN image is produced
shooting request
I B shooting request
Displaying processed image / Display image
7:1 4 processed image / Display image
0
[# Displaying
.
—
222

.

07:16

223

Use Case Diagram

SysML

The Use Case Diagram is a method for describing the usages of a system. It
represents a high-level description of functionalities that are achieved through

interaction among a system (subject) and its actors (environment) to achieve a
goal.

[-
j\\L ., cifduge
Taki pmurﬂ =iNdudez - Take pmm in
o o, . n.._‘________’f \,_‘_‘_‘_______‘J B
e - — {
. .
- .) -
P z""" -.«.-L-.,L Artifical lightming systems

i - ", ~ -
B

Arcadia/Capella

Capabilities in Capella are equivalent to SysML use cases and Capabilities
Diagrams largely ressemble SysML Use Case diagrams. Capabilities are
intensively used in Capella to organize the functional analysis: the
involvement of stakeholders in a given capability is enriched by a

specification of the stakeholder functions performed in the context of this
capability.

Comuale

Fhamagraph Takr pirmures Take micrurr in shidino

artificial ighting systems

Enyirar rent
Take videas

Requirement Diagram

07:16

224

SysML

SysML includes a graphical construct to represent text based requirements
and relate them to other model elements. The Requirements Diagram captures
requirements hierarchies and requirements derivation, and the satisfy and

verify relationships allow a modeler to relate a requirement to a model

element that satisfies or verifies the requirements. The requirement diagram
provides a bridge between the typical requirements management tools and

the system models.

efequienents
! Customer Requirement
1d="URD-015"
Text = “The camara shall procuce
“minimal chirominance and luminance
‘naise is low light conditions”
: e T *
s ~
s |
adenveReqts | teqt e
S ~
| ~
| ~
s ~
> erequirements erequirements
System Reguirement System Requirement System Requirement
14 = "REQ-FUNCO75" |d = "REQ-PERF-003" 1d = "REQ-PERF-007
Text = “The image processng software Text ="The sensor shall be_ at leadt 10 Text = “The foemat of the sensor shall be
shal impiement chrominance and Mo 24x35 (full frame)”
luminance Noisa racuchon algorthms™
| - x
| atrsces > !
N\
B N csanstys usatistys
actiittys !
Process image | ~]
| cakzcates \ !
W N !
aliocks aiotke
Image Processor abiacks Shutter-Sensor
— Motherbosrd cai
= pane Durslisn
Imeps Controber croie0fonfusion ‘ Distance

Arcadia/Capella

Textual requirements can be displayed in any Capella diagram.
Relationships between requirements and model elements as well as
between requirements can be shown. There is however no dedicated
requirement diagram in Capella.

Ik Al
ity salisty)
A

= — 1
. @ Cortol z1o0ting
5N :

Class Diagrams

SysML Arcadia/Capella
The UML Class Diagram does not belong to the official subset of UML Capella class diagrams are fully aligned on UML class diagrams. Capella
diagrams available in SysML (it is replaced by the Block Definition Diagram however adds a certain amount of construction rules (prohibiting
which is based on the UML Class Diagram, with restrictions and extensions). dependency cycles for example, or enforcing certain visualization choices
However, it is presented here, as it is frequently used in addition to SysML according to the properties of elements).
diagrams.
= Datatypes
|
LEELYpE EDFiasHsTatus | [sHooTinG sTae| [sHooTNG MODE EXPOSURE
= COMPENSATION
” enumeratons T ON = TRUE T PORTRAIT T AU
23 EV
FLASH STATUS SHOOTING STYLE SHOOTING MODE EXPOSURE COMPENSATION X OFF = FALSE EC LANDSCAPE Ep —
stimbutes enumeraton kerls enumeraton irerais ensmerapon kerlz W SPORT T Ay E 138V
0N = true PORTRAT AUTO 23 EV E o
OFF = false LANDSCAPE P ABEV EC NIGHT TV EPaeY
SPORT AV 0 - E -
NIGHT v 113 EV EL MANUAL
MANUAL 238 E + 23EV
<enumeratons jons i ions 150 | [aperTure| [EFuash ntensi| B3 sHuTTeR ReLease] [sHuTTER seeeD
APERTURE FLASH INTENSITY SHUTTER RELEASE
r Tz e | [Tanis || [snumerston irerse E10 | |8 L SUBTLE L SINGLE = 1/60
100 122 SUBTILE SINGLE
i iz Sl TiEC L0 | [Eia T MEDIUM BURST 17125
400 156 STRONG 400 i’ 1/5,6 EC STRONG BT 1/250
oo i =0 | |Eim 17500
AUTO 1He 600 | | E i T 1/1000
EAUD | | E#16
Timestamp Uity aunits Uity aprimtives
afiribates Hour Minute Second Date
- Hour {rax=23, fmin=0, min=0, E nimestamp Hour Minute Second Date
-m min=0} max=50} max=58}
: =5 h: Hour T [min] =0 T [min] =0 T [min] =0
5 m: Minute Tmax] =23| | T (max] =59 | T [max] =59
=5 51 Second
—5 d: Date
Metadata
atites
-heywonds : String
| B Hetadata]
EXIFS — S
atinbutes -gxposure | Diaphragm opening O keywords : String
_zompensation | EXPOSURE COMPENSATION prre—
_date Timestamp 8- APERTURE
-flash ; FLAGH STATUS =8 : SHUTTER SPEED
-sensiiiy - 150
“openng E exrs exposure | [= Disphragm opening
-camera dats 5 compensation : EXPOSURE COMPENSATION 5 a: APERTURE
[Camera data | Exposure Triangle =5 date : Timestamp & 5: SHUTTER SPEED
stmbutes sitmbutes % flash : FLASH STATUS
:mm :.ss‘rit:-?g -gensibity : 50 =5 sensibility: 1SO) opening
version - Strig
07 16 -lens : String

B camera data

camerz data E exposure Tiangle

5 sensibility : IS0

75 make : String
75 mode : String
225 5 version : String
=5 lens : String

Parametric Diagrams

SysML Arcadia/Capella

Parametric Diagrams are a restricted form of Internal Block Diagram that While most of the underlying concepts are present in Capella (constraints,
shows only the use of constraint blocks along with the properties they opaque expressions with assisted editing, parseable expressions,

constrain within a context. Parametric Diagrams are used to support properties on elements, physical dimensions, etc.), no diagram is dedicated
engineering analysis, such as performance or mass properties analysis. to their graphical display.

- e T
circleOfConfusion : Distance focalLength : Distance
a 1] Shutter-Sensar \
[+ "“mu—|n—:| I 5 shutterSpeed : Duration (Secends) ', s
- —_ r & arcledConfusion : Distance (mm) L 3
| shutterSpeed : Duration I F number : Short | o {0 Optical Assembly g Popeeiocs disance = ocallangih 2w
[] fDI:I|LtI'Igﬂ1-= Distance (mm) numbercihckeDhConf o son-focsllength
» =5 F number: Short
saqualy eequals wequals weguaks "Ji'
Owned Specification : Hypedocal distance = (focalLength*2)/(F numbercincleCf Confusion)+facslLength | @ E
ghutterSpesd circleOfCon fugion focal ength F numizer
wconstraints

{Hmmwm;ﬂfﬁmm ﬁ,’;ﬁmmmmhmmm Note: Currently, Capella users typically use dedicated viewpoints (language and

analyses extensions + graphical layers on top of existing diagrams) to evaluate

their architecture against non-functional constraints. They rarely use the

07:16 architecture models for simulation purposes. Should the end-user request them,
parametric diagrams could be an easy addition to Capella.

226

Differences

07:16

227

* Functional analysis is a classical technique
by systems engineers. Arcadia and Capella

oroadly used
orovide
nelpers to

methodological guidance and engineering
support this technique that has been most

SysML V1.

y left out of

* The mapping of Capella functions to SysML activity is the

most natural one in terms of semantics. Ca

are verbs specifying the actions expected f

component they are allocated to. This sect

the structural differences between SysML
™ activities/actions and Capella functions.

228

pella functions
rom the
ion describes

SysML

The articulation between several Activity Diagrams relies on two major
concepts: activities are described by different kinds of actions including some
that can reference other activities, and the parameters of a given activity are
connected (delegated) to the output or input pins of the actions describing it.
This strong encapsulation mechanism favors the reuse of activity definitions in
rmultiple contexts but imposes constraints on what can be represented in one
single diagram and makes bottom-up workflows more difficult to implement.

— o ¥

—————

A e

|

—— R o
JE |

07:16 T =

229

Arcadia/Capella

There are three major differences between SysML Activity Diagrams and
Capella dataflows:

1. There is no control flow in Capella Dataflow Diagrams, meaning that
there is no semantics of execution and there are no control nodes
such as Join, Fork, etc.. The detailed rationale for the absence of
control flows in Capella dataflow is explained in this dedicated paper.

2, The relationship between a function and its subfunctions is a direct
containment

3. There is no delegation mechanism between functions at each level of
decomposition in Capella. The rationale is detailed hereunder.

In a hierarchy of Capella functions, non-leaf functions are only "grouping”
elements. This means:

= Non-leaf functions are not supposed to have ports nor functional
dependencies

= Non leaf-functions are not supposed to be allocated to components

« A leaf function can be connected freely to any other leaf function

= When a non-leaf function has ports, the design is considered non-
finalized. The remaining ports are supposed to be moved towards a
leaf function

= Low-levels dependencies between leaf functions are automatically
displayed when intermediate/parent/non-leaf functions are
displayed on a diagram.

The rationales for this modeling choice are multiple:

= This helps manage the complexity of functional trees by relieving
engineers from the tedious task of maintaining the consistency of
dependencies between several levels of decomposition

= This allows the immediate production of simplified views of the
functional analysis

= This enables the easy combination between top-down and bottom-
up workflows

el

L

Capella leverages this language choice to provide several kinds of
simplified views of the system architecture. The following diagram for
example is automatically computed. Ports are displayed on non-leaf
functions but still belong to children functions.

Similarly, graphical simplifications of Architecture Diagrams can be
by ically performing grouping at component and
function levels.

.

Integration Functions / Components / Interfaces

The biggest objective of the Arcadia method is to secure the architectural design activity through identification and justification of the interfaces. This is achieved
by providing a global approach to conduct functional, structural, and interface modeling in parallel:

» |dentification of the functional expectations of the subsystems (allocation of functions to components)

« |dentification of the functional dependencies between the subsystems (specification of the exchanges between functions ideally with a structural description
of the exchanged items)

» Allocation of functional dependencies to assembly relationships between subsystems (allocation of functional ports to component ports, allocation of
functional exchanges to component exchanges, etc.)

» Specification of the interfaces provided and required through component ports (with a possible automated deduction based on all the above-mentioned
specification)

)
CJusereontos Ell.n':\-gc-;crt:lllcr

§lioppars Sausker|Suston Dell =1 Lnine TR Irjgers A

D=E shoat mg reyaest S n
O _ cooe

D] <l i v aned g a A
+

(i} Lapturs

Farzrmeters 5 DRl f ack amamztes

0 oriral Rach

CrE Fzamesz- L

07:16 “rapcr integration of intefasss brtesor functions and iredaces botacen
<0 acaeats, with Alacaran rednanisrs atsesenal eels piwsicd peth
eprmsenilirg malt-ooirt eschanges like susses are nct areserted Fers),
sunchnnal Behanges caty Eschanga (fems that ara latar seferzncad by the
Triterfa e o dud s rsgquirsd by the Corr ponets

230

Dl [Capture request]

D [Exposure Settings, Shooting settings]

Dl [Flash Status]

D=l Parameter DB

] [[SERNT

© v 01 QLT
[IR T R e T S Fas Corrand¥sianie A RS Y s LT BT
0 b Lk FEEM SIS [3
{ :
)
'
)

[} 25235 awrrquredies S0 190 HOXK el G S
-
i

O e lr]

B S Comar X s gosa waiiun W

This integration of the functions / components / interfaces triptych is not straightforward to implement and enforce in SysML v1. This global approach promoted in
Capella also comes with a set of assistance tooling enforcing the model correctness regarding this integration and providing automation means.

07:16 Note: The topic of a better integration between structure and behaviour is currently being investigated within the SysML v2 SST submission team.

231

;Zi Management of "instances”, or "definitions and
usages'"

The SysML Internal Block Diagram is dedicated to model the internal structure of a block. SysML relies on a generic block/part paradigm: in an Internal Block
Diagram, a block can be decomposed into parts (usages) which are themselves typed by other blocks (definitions). A bicycle “block” has two parts “front wheel” and

“rear wheel” which are both typed by the block “wheel”. The "wheel” definition is captured in one dedicated block and the same definition can be reused many
times in the system through the part concept.

It is possible in Capella to use the same block/part paradigm than in SysML. The following diagrams show how the memory card compartment of the camera can

have two slots. There is only one “Memory Card” component, but it is referenced twice. The component breakdown diagram shows the unicity of the "Memory
Card” component.

£] camera Body: Camera Bady

E Femaovable components | Removable companents
§ | card slot 1 : Memory card) § | card slot 2 : Memory card
¥
07:16 Citterent "Pars”, same "Block”

232

07:16

233

ﬁ'ﬁ‘i’u = e

However, Capella is configured by default for an instance-driven modeling. Return of experience showed that systems engineers are not necessarily comfortable
with the workflow of creating definition elements first (*blocks” or "components”) and then referencing them from specific usage elements (“parts”).

In addition, architectural design in Capella also consists in performing non functional analyses where it is critical to be able to distinguish the different occurrences
of each element and to be able to give them different properties or values. For example, safety analyses typically require to distinguish between the execution of

an “identical” function in two distinct components.

However, Capella is configured by default for an instance-driven modeling. Return of experience showed that systems engineers are not necessarily comfortable
with the workflow of creating definition elements first ("blocks” or "components”) and then referencing them from specific usage elements ("parts”).

In addition, architectural design in Capella also consists in performing non functional analyses where it is critical to be able to distinguish the different occurrences
of each element and to be able to give them different properties or values. For example, safety analyses typically require to distinguish between the execution of
an "identical” function in two distinct components.

This means components and functions in Capella are by default considered as instances or usages.

§ | Camera Body

§ | Remouahle campanen ts

ﬂMemrymrd 2

U Memarng card 1

Different "blocks", possibly replicated / kept spnchruniaedj

e B
B o B B B

To support this approach, Capella provides automated mechanisms allowing the replication and synchronization of model elements (REC and RPL, for Records and
07:16 Replica).

MNote: This topic is known as "usage-based modeling” in the SysML v2 submission 55T team, the goal being to have a language able to efficiently support multiple creation
234 workflows. The outcome of this effort might at some point be taken into account in Capella.

REQUIREMENTS IN CAPELLA

[IF NOT INSTALLED] ADD THE REQ ADDON

-
2 ca pEI I a ARCADIAMETHOD~ WORKBENCH ~ SERVICES SUPPORT RESOURCES CONTACT

| License: EPL

License: EPL

This add-on allows importing a set of requirements from a ReglF file (Requirement Interchange Format / OMG Standard).
The import is iterative (diff/merge based) and a set of tools is provided to link the model elements to the requirements.

For more information, please install the addon within Capella and check online help then dedicated section for the addon.

License: EPL

07:16

236

[IF NOT INSTALLED] UNZIP IN DROPIN FOLDER

B cepela Mame N Date modified

B eclipse B Requirements 16/10/2019 13:32
. configuration

. dropins
. Reguirements
. features
| H
. plugins
l readme
l workspace

l samples

07:16

237

07:16

238

Start Capella

Open the Viewpoint Manager view
using Window menu then Show View
and Other...

Select Viewpoint Manager in Kitalpha
directory and press OK

The Viewpoint Manager view is
displayed

The viewpoints available in the
platform are listed in this view.

If using Capella version < 1.0.x

* Right-click on the name of a viewpoint
and select Start in order to start the
viewpoint

If using Capella version > 1.0.x

* Select any model element (diagram
element, element in the project
explorer3 related to your project

* Right-click on the name of a viewpoint
and select Reference in order to start
the viewpoint

[] Properties i- Information %# Semantic Browser [Viewpoint Manager 2 [Cape

Project test_req

[m} & [OEBD] Operational Context 3
-

la~l@~|&ea

type filter text

= Capella (Incubation)
= General
(= Capella
wv [= Capella Viewpoints
{3} Capella Requirements
= Help
v [= Kitalpha
& Reports
() Requirements
& Resourcel Reuse
[Viewpaint Manager
= Modeling Patterns
= Sirius
(= Sirius Profiler

= Team

Cancel

Mame

(] Capella Requirements

Verzion

0.10.0

State

Unre...

* Operational Ana
* System Analysis

-+~ CAN BE USED IN MULTIPLE LAYER

ysis Requirements

Requirements

* Logical Architecture Requirements
* Physical Architecture Requirements

* EPBS Architecture Requirements

07:16

239

INavaR

OBy~
E = "Capella Project Explorer §2
A

Select a name to find
7 = any character, * = any string

.|

|type filter text

= aula
=5 SPORT
= SPORT_V2
w [test req
[test_req.afm
v [*test_req.aird
~ {2 test_req
~ f Operati
@ Opt
(> Ope 55
= Inte
= Dat|
~ %2 Ope
&
= Roli
= Ope
£ System
£ Logical
4 Physice 1%
£ EPBS A
(= Representa &
= test_req.meloc
v = teste_Req G
[} teste Req.afm
[F] teste_Req.aird
= teste_Req.melt

@ & M

07:16

3 tect reavtect reanCineration

240

Add Capella Element
MNew Diagram / Table...

Copy Qualified Name
Search and replace
Cut

Copy

Paste

Delete

Move Up

Sort Content

Sort Selection

Move Down

Undo Do Command

Redo

Show in Semantic Browser
Show in Diagram Editor

Show Impact Analysis...

Send to Fast Linker View

Send to Mass Editing View

Send to Mass Visualization View
Refresh All Sub Representations
Remove Hidden Elements
Validate Model

REC / RPL

Patterns

Transitions

Wizards

Allocation Management
Requirements Viewpoint

Fragment...

Pranrecs Manitarinn

Ctrl+Shift+F
Ctrl+X
Ctrl+C
Ctrl+V
Delete

Ctrl+PageUp

Ctrl+PageDown

Ctrl+Z
Ctrl+¥

2]
F10

F&

R - vy

i

WadiE LI

& *[OEBD] Operational Context [3

#lB-%-leea- 6

Property Value Pkg
Requirements Pkg

Component Exchange Category
Constraint

Boolean Property Value
Enumeration Property Type
Enumeration Property Value
Float Property Value
Integer Property Value

Property Value Group
String Property Value

Capella Module

Capella Qutgoing Relation
Capella Types Folder
Grouping Element Pkg

- Browser [§ Viewpoint Manager 52 (1

Version State

0.10.0 Active

ADD A CAPELLA MODULE IN THE LAYER

Select a name to find
? = any character, * = any string

|typefi|ter text (@]

= aula
=5 SPORT
= SPORT_V2
w Lg test_req
[test_req.afm
v [*test_req.aird
s 92 test_req
w fH Operational Analysis
[Capella Module]
= Operational Activities
[= Operational Capabilities
= Interfaces
= Data
~ %2 Operational Context
&% [OEBD] Operational Context
= Roles
(= Operational Entities
B3 System Analysis
3 Legical Architecture
3 Physical Architecture
4 EPBS Architecture
= Representations per category
= test_req.melodymodeller
v [teste_Req
[5] teste_Req.afm
D teste_Req.aird
= teste_Req.melodymodeller

07:16

241

“¥ CREATE A REQ

=i

REQUIREMEN™

Ht Uperational Analysis
[Capell= kA~ 1-1

= Operat Add Capella Element %
= Operat ¢ cut Ctrl+X
= Interfa
G Data | 1= COPY Ctrl+C
s [OF 3§ Delete Delete
[Foles
(= Operat Move Up Ctrl+Pagelp
B System An |2, Sort Content
Ht Logical Ar Sort Selection
H} F'I"I}"E.icﬂl A b v Mimaemn ("trl+ PaneMNmam

The only way to create requirements is through the Project Explorer. 6
[good side] Capella connects to Doors (SSS) to import requirements.

UIREMENT FOLDER &

Boolean Value Attribute
Date Value Attribute
Enurneration Value Attribute
Folder

Integer Value Attribute

Real Value Attribute

Requirement

String Value Attribute

e’

B <= <M< <M <M<

REQUIREMENTS CAN BE USED IN ANY VIEW

- x

= capworkspace - platform:/resource/test _req/test req.aird/[OEBD] Operational Context - Capella

File Edit Diagram MNavigate Search Project Run Window Help

N BRI E ke | 5 |2

75! Ta *Capella Project Explorer 53 = B R *testreq & *[OEBD] Operational Context &3 = 8
» ERET St I Gomee
Select a name to find [AN
T = any character, * = any string .
[type filter text | o (= Entities @
= aula 40| Operational
=5 SPORT Entity
I SPORT_V2 % Operational Actor
v L5 testreq fContainad In

1] test req.afm
v |2 “test_req.aird
v) test_req p .
~ [Operational Analysis Tl
v [R] [Capellz Module]
v &l
Qn
(- Operational Activities
(= Operational Capabilities
= Interfaces
= Data
v %@ Operational Context
& [OEBD] Operational Context
(= Roles
(= Operational Entities OperationalActor 2
1 System Analysis
£ Logical Architecture
F Physical Architecture
£} EPBS Architecture
(= Representations per category
= test_req.melodymadeller
~ [teste Req
|41 teste Req.afm
2] teste_Req.aird
= teste_Req.melodymodeller

(= Common @0
{c} Constraint

> ConstraintElem...

&, Constraints

", Applied Property
v
Value Groups

(= Requirements
", Requirements
-~ Requirement Link

. ", All Linked
Requirements

[Properties 52 i Informatic

& [DRepresentation Descriptor] [OEBD] Operational Context

~ Prope
Capella perty
Management
Description MName: | [OEBD] Operational Context |
Requirements Allocation Package: | |
Semantic
Behaviors
. Contextual Elements : ‘ <undefined> |
07 . 16 Dacumentation
Rule8iend Elements of Interest : ‘ <undefineds> | R
Appearance

242 ¢ g

o test_requtest_req:Operational Analysis::Operational Context 235M of 688M U:

L

IN THE VIEW.

Selection Wizard

Show/Hide Requirements

Select a name to find
? = any character, * = any string

|type filter text

Select a name to find
? = any character, * = any string

¥ SELECT THE REQUIREMENTS THAT WANT TO USE

|t;.rpe filter text

>

-

Tree View

v (s test_req
w {5 test_reg
v BB Cperational Analysis
v [Capelia Module]
v i
@ [] Important Stuff
(4] Tree View
07:16 | [l Important Stuff

243 @

0K

Cancel

= capworkspace - platform:/resource/test_req/test req.aird/[OEBD] Operational Context - Capella
File Edit

- E@ YD

Diagram Mavigate Search Project Run Window Help

RS
oo 73

Pl W XK BT A~®|[S s-—-@IE

75! Ta *Capella Project Explorer 53 = B R *testreq & *[OEBD] Operational Context &3
b |B& v a-Be-N-M-|cf] & |

Select a name to find
T = any character, * = any string

0

|type filter text

= aula
=5 SPORT
I SPORT_V2
v [test_req
1] test req.afm
v “test_req.aird
v) test_req
~ [Operational Analysis
v [Capella Module]
v &l
@ []Important Stuff
(- Operational Activities
(= Operational Capabilities
= Interfaces
= Data
v %@ Operational Context
& [OEBD] Operational Context
(= Roles
(= Operational Entities
1 System Analysis
£ Logical Architecture
F Physical Architecture
£} EPBS Architecture
(= Representations per category
= test_req.melodymodeller
~ [teste Req
|41 teste Req.afm
teste_Req.aird
= teste_Req.melodymodeller ~

[Entity] Entity 1

= -

408 Entity 1

OperationalActor 2

3¥# Semantic Browser 2[5 Viswpoint |

Current Element

ADD A LINK / CHECK RELATIONS

Q

- Important Stuff

- x

__CulckAccezz E’l =

(= Entities 0

Operational
Entity

% Operational Actor
fContainad In

- The Entinty shall do a important stuff

R

= Common 0
{c} Constraint

> ConstraintElem...
&, Constraints

", Applied Property
v
Value Groups

(= Requirements 0
", Requirements
-~ Requirement Link

. ", All Linked
Requirements

Gro-Ey ¢ 5|k = o

eferenced Elements

Referencing Elements

07:16

< >

v Entity 1
w [Breakdown
R OperationalActor 2
v {2 Parent
== Operational Entities
v BB Parent
%8 Operational Context
w 2 All Related Diagrams
& [OEED] Operational Context

v f Allocated Requirements
@ []Important Stuff

244

test_requtest_req::Operational Analysis::Operational Entities::Entity 1

PGS ot o [T

REQUIREMENT TREES

= capworkspace - platform:/resource/test_req/test_req.aird/[OEBD] Operational Context - Capells - x

File Edit Diagram MNavigate Search Project Run Window Help
P [e 5 | [
75! Ta *Capella Project Explorer 53 = B R *testreq & *[OEBD] Operational Context &3
2 BE ~ |2-%- & B-w- et a~|B@-]¢

Select a name to find

¢ Palette [

ks

T = any character, * = any string .
|typeﬁ|tertext | =% (R} (= Entities @
== aula - Amore important stuff Operational
=5 SPORT Entity
I SPORT_V2 % Operational Actor

w [23 test_reg 4 Contained In
1] test req.afm
v |2 “test_req.aird

v) test_req

= (= Common @0
(R]
Important Stuff

{c} Constraint

ENGDAIN- -~ - - -=-=-=-~=-~ >

> ConstraintElem...

~ [Operational Analysis

v [R] [Capellz Module]

vl
@ []Important Stuff
@ [] A more important stuff

(- Operational Activities
(= Operational Capabilities
= Interfaces
= Data

v #8, Operational Context

£ [OEBD] Operational Context

(= Roles
(= Operational Entities

£ System Analysis

4 Logical Architecture

£} Physical Architecture

£ EPBS Architecture

[Representations per categary
= test_req.melodymodeller
v 5 teste Req
[teste_Req.afm
[teste_Req.aird
= teste_Req.melodymodeller

07:16

[Properties 52 i Informatic

& [DRepresentation Descriptor] [OEBD] Operational Context

Fonts and Colors:

Capella

Management Segoe Ul v g v
Description B I Al [2][&

Requirements Allocation

Semantic ujl+

Behaviors

Dacumentation
Rulers & Grid

Appearance

- The Entinty shall do a important stuff

&, Constraints

", Applied Property
v
Value Groups

(= Requirements
", Requirements
-~ Requirement Link

. ", All Linked
Requirements

245 ¢ ’

o test_requtest_req:Operational Analysis::Operational Context] 25TM of 736M U:

07:16

246

ADD REQUIREMENT METADATA

* |t is required to create a new Type

* Create a Capella Types Folder = Rename Req Types

W [g‘ test req
Ll test_req.afm
w || *test_req.aird
W “@ test_req
w M Operational Analy:
w Ll;” [Capella Modu

v & (] ES
@ []lmpo 5
© [JAmo o

= Operational Ac

= Operational Ca *
= Interfaces
= Data
w %ﬁﬁ'a Operational Cc
s [OEBD] Op
(= Roles laz

(= Operational En
B System Analysis
8 Logical Architectu
ER Physical Architect: </
3 EPBS Architecture
[= Representations per c:
= test_req.melodymodeller
v [teste_Req o
14 teste_Reg.afm e
|9| teste_Req.aird
= teste Req.melodymodelle

==

Add Capella Elernent

MNew Diagram / Table...

Copy Qualified Name

Search and replace Ctrl+Shift+F
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Delete Delete
Move Up Ctrl+Pagelp
Sort Content

Sort Selection

Move Down Ctrl+PageDown
Undo Delete Ctrl+Z
Redo Ctrl+Y¥
Show in Semantic Browser F9
Show in Diagram Editor F10
Show Impact Analysis...

Send to Fast Linker View F&

Send to Mass Editing View

* [= Property Value Pkg
*» | = Requirements Pkg
£t Compenent Exchange Category
{c} Constraint
—- Boolean Property Value
E2 Enumeration Property Type
== Enumeration Property Value
=o Float Property Value
= Integer Property Value
[E] Property Value Group
=o String Property Value
[R] Capella Module
*% Capella Outgoing Relation
% Capella Types Folder
(= Grouping Element Pkg
|
|
i

e IAnalysis

40E] Er

Operatior

- Requirement Data Type Definitions

 |E PUID (Requirement ID — name comes from DOORS)

 |E Rationale v #% ReqTypes
. . . e [EPUID
E Verification Text G IE Rationale
* |E Verification Method Expected @ [EVV Text
. o |EVV Method
* |E Requirement Status & [E Status
* |[E Sign off Org W b oan O o

@ |E Responsible Crg

* |E Responsible Org

07:16

247

Ao blec bl A = b=

VIFESR ¥ | ch gy S R @t S ®E | | 2% Palette

type filter text Requirements =1 Tk
ies
General Capella requirements preference page I
Activity Explorer pe
v Capella Requirement's label i
Commands Configurak Expression | aql:OrderedSet{self.ownedAttributes- » select(a | a.definition.ReqlFLongMame == 'IE PUID").value, OrderedSet{self.ReqlFLongMame, self Req|FText, self ReglFChapterMame}-»select(s | s != 'null’ and s.size() > 0)-»add(OrderedSet{"}}- = first()}->sep(’) | Ipe
Delete Length (put nothing to display full text): | 80 | fon
Diagrams i
Model Attribute Value's label | L
Medel Validation Length (put nothing te display full text): | 20 | on
Project Explorer Other configuration items jon.
Refinement [[]Force DOORS RMF usage check while importing requirements En
Requirements
SCM e
Transfer Viewer ?Iu‘
Transitions/Generation ire
Usage Monitoring eq!
Help -
Install/Update
v Kitalpha ': L
Architecture descriptior a
Core Technology Kit
MDE Repaorting
Model Validation
Sirius
Team
< 5 Restore Defaults Apply
s/ pply and Close ancel
rresteREgam 1 Pranerties 527 i =

Annotation Query Language (AQL)

* agl:OrderedSet{self.ownedAttributes->select(a |
a.definition.ReglFLongName =="IE PUID').value,
OrderedSet{self.ReqlFLongName, self.ReqlFText,

.. self.ReglFChapterName}->select(s | s !="null' and s.size()
> 0)->add(OrderedSet{"})->first()}->sep(' ')

248

https://www.ibm.com/support/knowledgecenter/en/SSPT3X_4.2.5/com.ibm.swg.im.infosphere.biginsights.aqlref.doc/doc/aql-overview.html

=

| | Amnrmmpnr‘[ant STUTT
v 4% Req Types

Create the Requirement Type that include the
Data types as Attributes

v %% Req Types

o IEPU Add Capella Element @ Data Type Definition
D |ERat ¥ Cut CrleX £ Enumeration Data Type Definition W [EPUID
Q EwW ° .
@ Ew [E Copy Cirec | I Module Type i@ |E Raticnale
© [ESta [Paste Cuiey | I Relation Type o |EVV Text
g :E;ig 3 Delete Delete b Requirement Type ﬂ IE WV Method
1=
(= Operatio ¢ Move Up Ctrl+Pagelp ﬂ [E Status
(= Operatio |%, Sort Content i |E Sign Off Org
= Interface : .
= Data sort Selection & IE Responsible Org
v %8 Operatio Mowe Down Ctrl+PageDown @ [H . t T]
S d%p[GEBI _ equirement lype
<2 Undo Delete Ctril+Z | . e
o Rolee o N _ A = Operational Activities
@ |E Responsible Org
O [Requirement Typel
(= Operational Activitie: Add Capella Elernent » Ay Attribute Definition
Operational Capabilid : P :
g Ini'erfacﬂ P -1‘_" Cut Chrl+X M Attribute Definition Enumeration
- - I s el T [
07:16

249

CONFIGURE THE ATTRIBUTE

WP IC NERPUNEIDNE Ty
v OP [Requirement Type]
O [Attribute Definition]
+ [Operational Activities
= Operational Capabilities

= Sclection Dialog

Selection Wizard

Select a name to find
? = any character, * = any string

|type filter text

v (B test reqg
w i7 test_reg
v ff Oper
v i Req Ty
@ IEPUID
@ |E Rationale
@ |EResponsible Crg
@@ |ESign Off Org
@ |E Status
@ EVW Method
@ IEVV Text

Tree View

@

oK

Cancel

(= Interfaces < >
(& Data 5 = Information Semantic Bro =B Viawpoint Ma = Capallz Re =
¢ %8 Operational Context e X B i ia e [- o JEoie bt =
& [OEBD] Operational Context s
z g‘;:;tml - O [Attribute Definition] [Attribute Definition]
: -
B System Analysis Requirements VP ~ FProperty
B Logical Architecture _
B Physical Architecture Experl N . |
H EPBS Architecture ame:
‘epresentations per category
req.melodymodeller
q Data Type: | <undefined= U e
_Req.afm
Dmm mied
[
D [Attribute Definition] [Attribute Definition]
v p
rope
Requirements VP perty
Expert
Name: | IEPUID
07:16 Data Type: | IE PUID | e | 3

250

ADD RELATION METADATA

v 2l test_req
Add Capella Element > o Data Type Definition o E Operational Analvsis
of Cut Ctrl+X §% Enumeration Data Type Definition [I: la M d}rl]
o W dpelld odule
[1':'5“ Copy Ctrl+C ' Module Type il P
Paste Chrl+V O Relation Type W .‘ []
% Delete Delete O Requirement Type 0 [] Important Stuff
G MoveUp S Gy [] A rnore important stuff
1%, Sort Content b # REq T}"FIES
Sort Selection ﬂ IEPUID
Move Down Ctrl+PageDown ﬂ |E Rationale
< Undo Model Edition Ctrl+Z o [EVV Text
Redo Ctrl+Y ﬂ |[EVV Method
%+ Showin Semantic Browser 2] i |E Status
Z/ Show in Diagram Editor F10 i |E Sign Off Org
ate Show Impact Analysis. . i@ |E Responsible Org
A Send to Fast Linker View F& IE‘ CIFI Req
EF Send to Mass Editing View > @ catisfies
& Send to Mass Visualization View >
[¥ Validate Model e e [e e .
E§ REC/RPL > —————— P . . ; 2 ; .
roperties i- Information 5 Browser Viewpoint Manager Capella uirements
Patterns » plder] Req Types E P B -3 % P g g P Req
o roperty B¢ [Relation Type] [Relation Type
: Expert |
D , * Prope
Rationale Name: | Req Types Reguirements VP perty
WV Text
WV Method Expert
status Mame: | satisfies
sign Off Org
07:16

251

Selection Wizard

Select a name to find
7= any character, * = any string

|type filter text

Apply to the Requirement Set |

U e e
O WErdUUnidl ANdiy s N Pty

w [Capella Module] Value Groups
v &I [= Requirements e
@ [lmportant Stuff s, Requirements 1
@ [] Amore important stuff
v £ Req Types --¥ Requiremnent Linl
@ EPUID , & All Linked
& IE Rationale Requirerments H
o EVV Text
o EVV Method
o [E Status

OperationalActor 2 f

Tl

Tree Vi
0 IE Sigﬂ Off Ol'g ree View

@ |EResponsible Org

' OpReq
@ satisfies ® 0K Cancel
= Operational Activities I -

= Operational Capabilities
= Interfaces < >
= Data
~ %8 Operational Context
&u [QEBD] Operational Context
= Roles
&= Operational Entities

[Properties I2 | i- Information ¥%# Semantic Brow... [Viewpoint Man... [.f CapellaRequir. = O
=

B

@ [Requirement] [] Important Stuff
|

i * Prope
2] S)rst.em Analg.,rm Requirements VP perty
B Legical Architecture - -
B Physical Architecture Requirermnents Allocation
B3 EPES Architecture Internal Requirements Allocation Name: | Important Stuff |
Representations per category Expert Chapter name : | |
-reqmelodymodeller Text: | The Entity shall do a impoertant stuff |
=q
e_Reg.afm
e_Req.aird -
e_Req.melodymodeller Type: | <undefined= - | %
7:

252

"‘/&MEREATING THE ATTRIBUTES

[NANORACKS] Add Capella Element 3 Boolean Value Attribute 8 O [5tring Value Attribute] null
teq Types R . . L |
23 Capella Inceming Relation
thysical Functions of Cut Ctrl+X c o J At Requirements VP ~ Property
- P - & Date Value Attribute €q
-apabilities =S| Copy Chrl+C
nterfaces Paste Chrl+V & Enumeration Value Attribute E‘h’.pEl‘l
Jat i . .
.; ° c 9 Delete Delete | 2 Integer Value Attribute Definition : | <undefined> | s
ysical Context 3 Internal Relation
'hysical System v
. v . 4 AT ELALr Uy) Real Value Attribute
hysical Actors 8 Sort Content . . Value : | |
dew Physical Comj . &) String Value Attribute
) Sort Selection
dew Physical Funct "% Capella Qutgoing Relation
; Architecture Maove Down Ctrl+PageDown %
ntations per catege @ Unde Model Edition Ctrl+Z > = Selection Dialo O *
relodymodeler Redo Ctrl+Y (25 Viewpoint Man... [Capella Requir Selection Wizard
! B Send to Mass Editing View >
d = Send to Mass Visualization View > Select a name fo find)
? = any character, * = any string
rational Analysis | v Validate Madel [ype fiter text
Capella Module] B} REC/RPL 5 v (s test_req
v [Patterns > | Important Stuff Ve nalysis
@ []Impertant v ¥ Req Types
7 11 A more imnortant stud Fenert | Chanter name : | v O Op Reg
o EPUID
[Properties 32 | i- Information %# Semantic Brow... [§ Viewpoint Man... [Capella Requir.. = O
m =

Q [String Value Attribute] null

Requirements VP ~ Property

Expert

Definition: [IE PUID [REE. [Tree View
- I_“ UHLIULIUIIUIHIIUII}I} | |
v [R] [Capella Module] Value: [Re01 kS |
[.- [] @ oK Cancel |
07:16 w 0 [REDT] Important Stuff

& [IE PUID] REOT

@ [] A more important stul
253&/ £ Req Types

“” EACH LAYER HAS A “DEFAULT” REQ RELATION
A TABLE

* Operational:
* Activities X Requirements

* System:
* System Function X Requirements

* Logical

* Logical Functions x Requirements

* Logical Component x Requirements

* Logical Architecture Requirement Refinements
* Physical

* Physical Functions x Requirements

* Physical Component x Requirements

* EPBS

e Configuration Itens x Requirements
* EPBS Requirement Refinements

07:16

254

i ngEdg t

2—40f2-b5b9-09flc3abE731"
b5b9-

KEEP SIZE-
KEEP RATIO-

07:16

255

Replicable Elements Collection
(REC) e Replicas (RPL)

Written by Mateus S. Venturini

REC

REC

Definition

Complianc?

C

RPL

Bk

=t

synchronization

07:16

257

/
v
%IHE

07:16

258

A Function and its sub functions
(mono-root)

@ LF1

@I

@12

A Functional Chain and the Functions it involves (multi-root)

L

Two Functions and a Functional Exchange between them (multi-root)

A Component and its Sub Components (mono-root)

07:16

259

A Component and its allocated Functions (mono-root)

A Component providing and requiring Interfaces located outside the REC
({mono-root)

Q Interface 1

Q) Intesface >

FEE

A Physical Component and the Logical Components it realizes, including Functions and any other element
{multi-root)

PA

CREATING

£]ics

Right Click /
/

/
/

¥

[Validate Model |

Wizards
B Allocation Management

” &5 Instantiate a RPL from a REC
r

—_—_— e e e e e —————)

Select the components to replicate

07:16

260

[= e e |

Replicable Elements
(L) REC have references to external elements

Description

Name : RECZ |

Catalog : (= REC Catalog |«

Comgliancy: @ BLACK_BOX |

type filter tea

fa)

& modsl
1 model
B Logical Architecture
Bs- Logical Functions
@ Root Logical Function
D=0 FE2
@ 172 [+sUFF <6
W FOPZ
= FAPX
> FOP 2
@ LF5
B FOP 1 [«SUFFIX]
@ LF3 [+SUFFIX]
= FIP31
= FIP2
I FOP31
Logical Systemn
4 | LC 2:LC 2 [«SUFFIX]
LC 2 [+SUFFIX]
'5) [Component Functional Allocation] to LF3
."_"5 [Component Functional Allocation] to LF2

-

P b B XA

(1) REC have references to external elements oo

USING

(v Validate Model | |

L 2 ceerec >

Transitions

Wizards -] I m

= Replicable Elerents

Instantiate RPL from REC

Select options

07:16

261

Dscrt@ion I

REC: | RECT

Catalog : | (= REC Catalog

uffie |

Name : | RPL1

Compliancy: | @ BLACK BOX

[C]Enforce RPL Compliance On The Fly
Parent Location
(®) Use default locations
() Create specific packages
() Locate parents manually

|type filter text

| Q, |type filter text

v) RPL1
v LC2
ﬂ_} [Component Functional £
ﬁ.} [Component Functional £
v @ LR2
=2 FP1
Kl FOP1
v @ LF3
=2 FP1
Kl FOP1
FE2
§lLc2:Lc2

v (& BasicUseCase
mh Library Dependencies
s B3 ProgressStatus

» %8 BasicUseCase

B\ [projectapproach] SingletonComponents

5|

Cancel

07:16

262

~# JPDATE REC from the RPL

{Jics

&= Create a REC from selection
& Update REC from selection

&5 Instantiate a RPL from a REC

Validate Model

REC /RPL 3
Transitions »
Wizards

Show Impact Analysis...

@ The merge operation will have the following impact on the model on the right.

Required changes

~ A [Component Functional Allocation] to PhysicalFunction 2
s Addition into PC 2 (via 'ownedFunctionalAllocation’)
v QR
& Addition into PhysicalFunction 2 (via ‘inputs)
~ K FOP1
s Addition into PhysicalFunction 1 (via 'outputs')
~ DFl FunctionalExchange 1
& Addition
~ (@) PhysicalFunction 2
s Addition

Implied changes

o

= Merge Operation >

<~
~~~
—
—
—
_—

Replicable Elements
() REC have references to external elements

Description ]

REC: REC1 e
Name: REC1
Compliancy : @& BLACK BOX e
type filter text [}
<>
-
x
{1 LC 2: LC 2 [REC] [+SUFFIX] .
LC 2 [REC] [+SUFFIX] |
."‘_> [Cempenent Functional Allocation] to LFS 7
a ,'1) [Component Functional Allocation] to LF3 [REC] °-1
’ A3 [Component Functional Allocation] to LF2 [REC] 3
- @ Logical Functions =
’ @ Root Logical Fun 1
- @ LF2 [REC] [+ SUFFIX]
’ I FOP21 [REC]
- X FIPZ [REC]
B FOP 2
- o FES
D=8 FE4
@ LFS [+SUFFIX]
B FOP1
X APl
D51 FEZ [REC]
@ LF3 [REC] [« SUFFIX]
X FAP31[REC]
EFArP2
B FOP31 [REC]
(1) REC have references to extemal elements e
ok |[ cancal
Ll
-
-
= Update REC from selection ‘ - m} X
Synthesis & 4 & B v || & Selection & | maRec 5]
D? FunctionalExchange 1 D= FunctionalExchange 1 > §A]
v gF PC2() > i id
fb [Component Functional Allocation] to PhysicalFunction 2 EYS| @
w () PhysicalFunction 1 (1) > ®
2 FOP1 ~ () PhysicalFunction 2
v (@ PhysicalFunction 2 (1) = APl
[E FIP1
Details H W~ B X|EdM X
Cancd | Apply | oK




07:16

263

Validate Model

REC / RPL

Transitions

Wizards

Show Impact Analysis...
Allocation Management
Modeling Accelerators
Category

x o o g 405

Create a REC from selection
Update REC from selected RPL

Instantiate a RPL from a REC

Update selected RPL from its REC

Deelete RPL and related elements

Delete RPL but preserve related elements

R NEW EXCHANGE

& RPLL

D= FE2
D=1 FES
flLC2 aLc2A
LC2_A
f!.) [Component Functional Allocation] to LF3_A
f!_‘\, [Component Functional Allocation] to LFS
f!.) [Component Functional Allocation] to LF2_A
Lo LF2_A
X FP21
B FOP21
B FOP2
@ LF5
X FP1
B FOP1
L LF3_A
X FIP2
B FOP31
X FIP31
D=1 FE4




-+ REFERENCES OF THE REC->RPL

 [HOW TO] Replicate model elements in Capella (4°25")
* https://www.youtube.com/watch?v=h-ax6leVIxM

* Webinar - Strategies and tools for model reuse with
Capella (58°23")

* https://www.youtube.com/watch?v=128EhAXe-I18

* In-Flight Entertainment System (IFE) — Example

* https://download.eclipse.org/capella/samples/1.3.1/InFlightEn
tertainmentSystem.zip

07:16

» Capella Help — Replicable Elements

264



