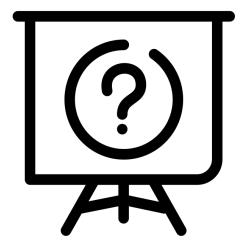

#### [SIS-08][LEC-003]

# Tools and Processes to Verification




| Date               | SES  | In Class                                                                     | Deliverables                                                                |
|--------------------|------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Aug, 1             | 01   | [LEC-000] Course Introduction<br>[LEC-001] SE Review                         | -                                                                           |
| Aug, 8             | 02   | [LEC-002] Global Verification Process                                        | [PRD-001] system beschption & Architecture                                  |
| Aug, 15            | 03   | [LEC-003] Tool and Processes to<br>Verification                              | [PRD-002] System DSM Product Tree                                           |
| Aug, 22            | 04   | [LEC-004] Life Cycle, Reviews & Baselines                                    | [PRD-003] Revised Requirements                                              |
| Aug, 29            | 05   | [LEC-005] Model Philosophy                                                   | [PRD-004] Verifications per Requirement through the Life Cycle              |
| Sep, 5             | 06   | [LEC-006] Preparing to test Campaigns                                        | [PRD-005] Models                                                            |
| Sep, 12            | 07   | [LEC-007] Planning V&V                                                       | [PRD-006] Test Articles, Procedures & VCD                                   |
| Sep, 19            | 08   | [TST-001] V&V Conceptual Questions<br>[PRD-007] DRAFT V&V Plan Presentation  | [PRD-007] DRAFT V&V Plan (DVM)                                              |
| Sep, 26            |      | We                                                                           | ek off                                                                      |
| Oct, 03            | 09   | [LEC-008] AIT Process                                                        | [PRD-008] End to End Test Articles                                          |
| Oct, 10            | 10   | [LEC-009] Critical Events &<br>Environmental Tests                           | [PRD-009] AIT Activities through the Life Cycle                             |
| Oct, 17            | 11   | [LEC-010] Testing Facilities                                                 | [PRD-010] Vehicle and On-Orbit Testing                                      |
| Oct, 24            | 12   | [LEC-011] Planning AIT                                                       | [PRD-011] Facilities                                                        |
| Oct, 31            | 13   | [LEC-012] GSEs<br>[LEC-013] SCOE/OCOE                                        | [PRD-012] AIT Flows & Activity Log                                          |
| Nov, 07            | 14   | [LEC-014] Launching Campaign                                                 | [PRD-013] GSEs                                                              |
| Nov, 14            | 15   | [LEC-015] Trends / MBSE / Industry 4.0                                       | [PRD-014] AIT Task Sheets<br>[PRD-015] Vehicle Integration & Launching Plan |
| Nov, 21            | 16   | [TST-002] AIT Conceptual Questions<br>[PRD-016] V&V & AIT Plans Presentation | [PRD-016] V&V & AIT Plans                                                   |
| Nov, 28<br>Dez, 05 | EXAN | 1: Design of an AIT Facility to ITA's SmallSat                               | t Projects                                                                  |





# How do we organize the projects?





# LEVEL



#### Verification Levels

- The requirement verification shall be performed incrementally at different verification levels. The number and type of verification levels depend on the complexity of the project and on its characteristics. The typical verification levels for a space project are:
  - I. Equipment(Example: valves, batteries);
  - II. Subsystem (Example: electrical power, attitude control);
  - III. Element(Example: launcher, satellite, ground station);
  - IV. System (Example: manned infrastructure system).
- The identification of the critical verification levels is driven by technical and programmatic considerations (e.g. functional architecture, overhead cost)

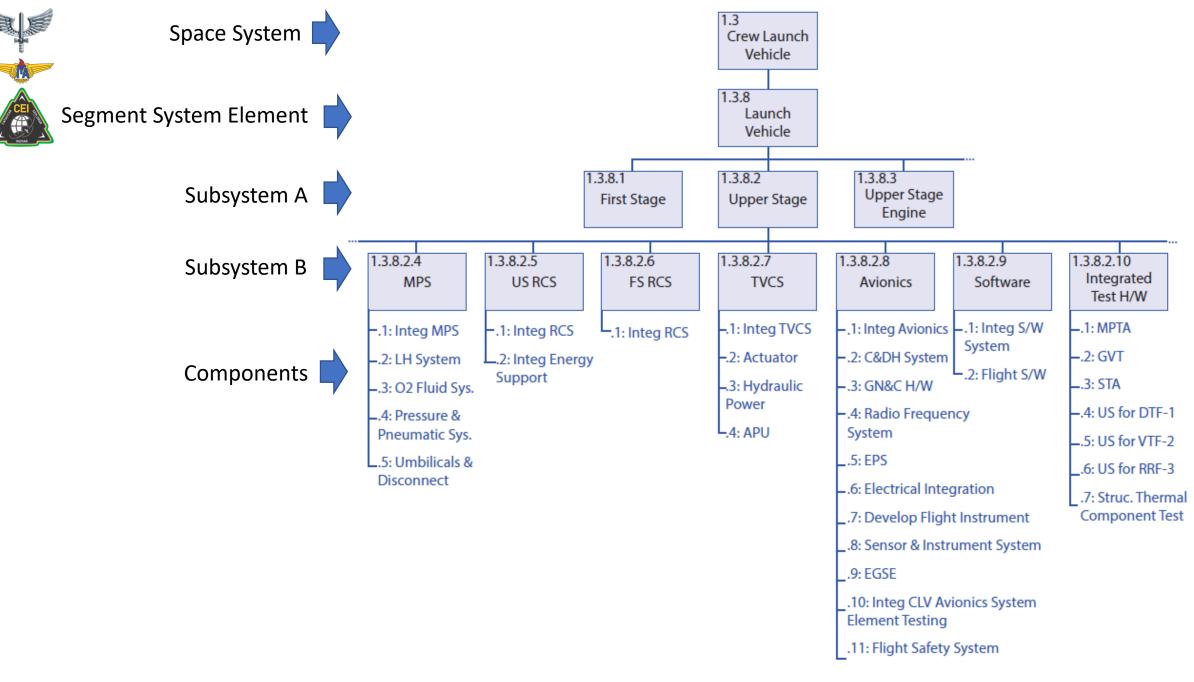


#### System Hierarchy (1/2)

- **Mission**-An individual system or groups of systems operated to meet a specific set of objectives.
- **System**-A composite of hardware, software, skills, personnel, and techniques capable of performing and/or supporting an operational role. A complete system includes related facilities, equipment, materials, services, software, technical data, and personnel required for its operation and support to the degree that it can be considered a self-sufficient unit in its intended operational and/or support environment.
  - The system is what is employed operationally and supported logistically. (More than one system may be needed to conduct a mission.)

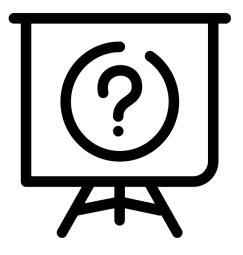


## System Hierarchy (2/2)


- Segment-A grouping of elements that are closely related and which often physically interface. It may consist of elements produced by several organizations and integrated by one.
- **Element**-A complete, integrated set of subsystems capable of accomplishing an operational role or function.
- Subsystem-A functional grouping of components that combine to perform a major function within an element.
- **Component**-A functional subdivision of a subsystem and generally a self-contained combination of items performing a function necessary for subsystem operation. A functional unit viewed as an entity for purpose of analysis, manufacturing, testing, or record keeping.
- Part-A hardware element that is not normally subject to further subdivision or disassembly without destruction of designated use.



## Hierarchical Level Names and Examples

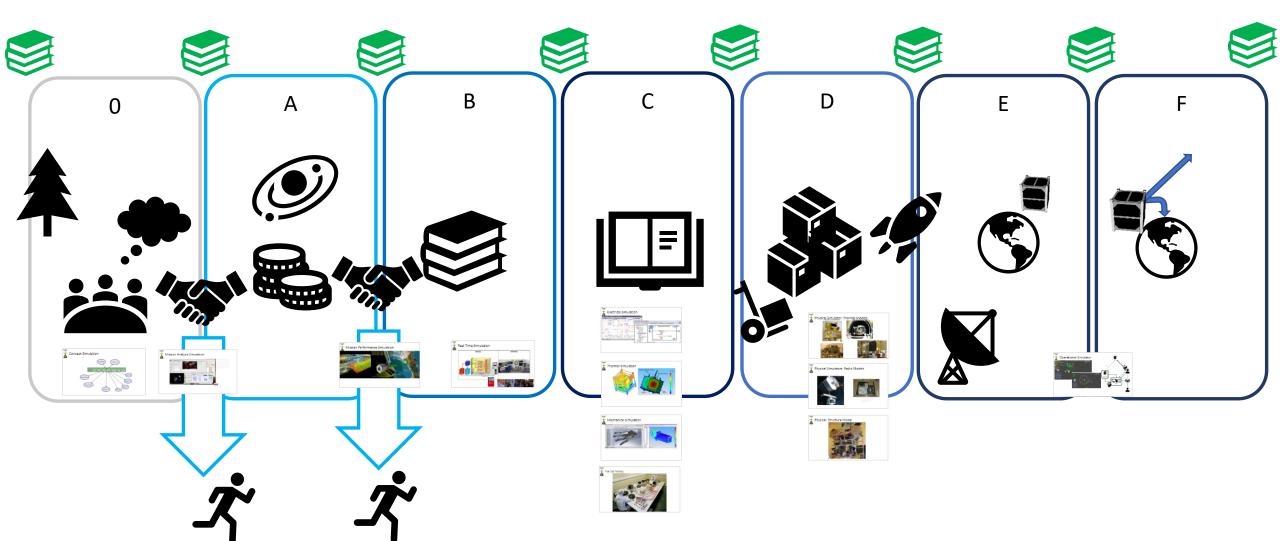

| Hierarchical Level Name | Examples                                                                                                                                                          |  |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Mission                 | Needs + Objectives + Operation of Everything Necessary to Meet the Objectives                                                                                     |  |  |  |  |  |
| System*                 | Total System = Spacecraft + Launch Vehicle + Ground Support Equipment + Communications<br>Systems (TDRSS, etc.) + NASCOM + POC + Science Data Center ++ Personnel |  |  |  |  |  |
| Segment                 | Flight = Spacecraft Bus + Instruments + Launch Vehicle +                                                                                                          |  |  |  |  |  |
| Element                 | Spacecraft = Structure + Power + C&DH + Thermal +                                                                                                                 |  |  |  |  |  |
| Subsystem               | Power = Solar Arrays + Electronics + Battery + Fuses +                                                                                                            |  |  |  |  |  |
| Component               | Solar Arrays = Solar Cells + Interconnects + Cover Glass +                                                                                                        |  |  |  |  |  |
| Part                    | Solar Cells                                                                                                                                                       |  |  |  |  |  |

- Any given system can be organized into a hierarchy composed of segments and/or elements of succeedingly lower and less complex levels, which may in themselves be termed "systems" by their designers.
- In order to avoid misunderstandings, hierarchical levels for a given mission must be defined early.



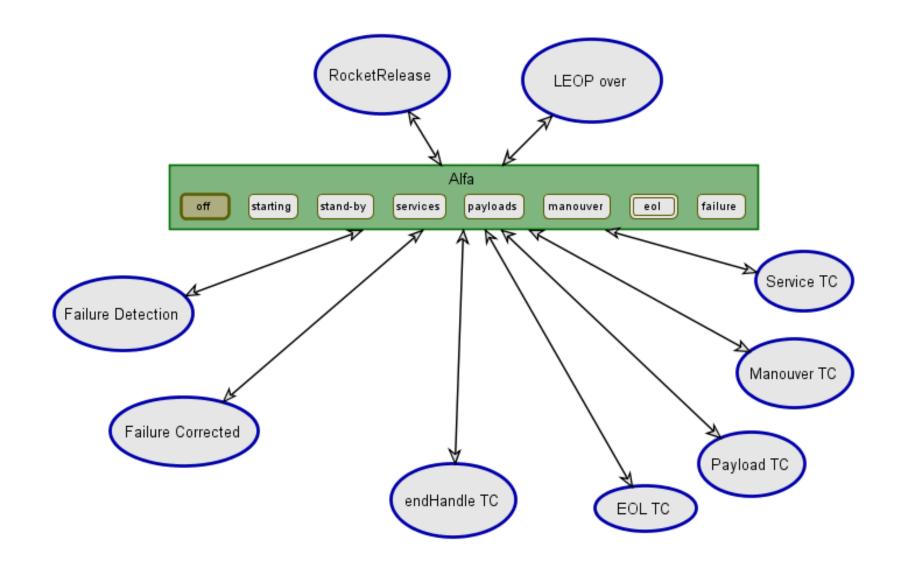


# What tools does Space Engineering use to V&V?






# MODELS & SIMULATIONS




#### Simulations in the Lifecycle

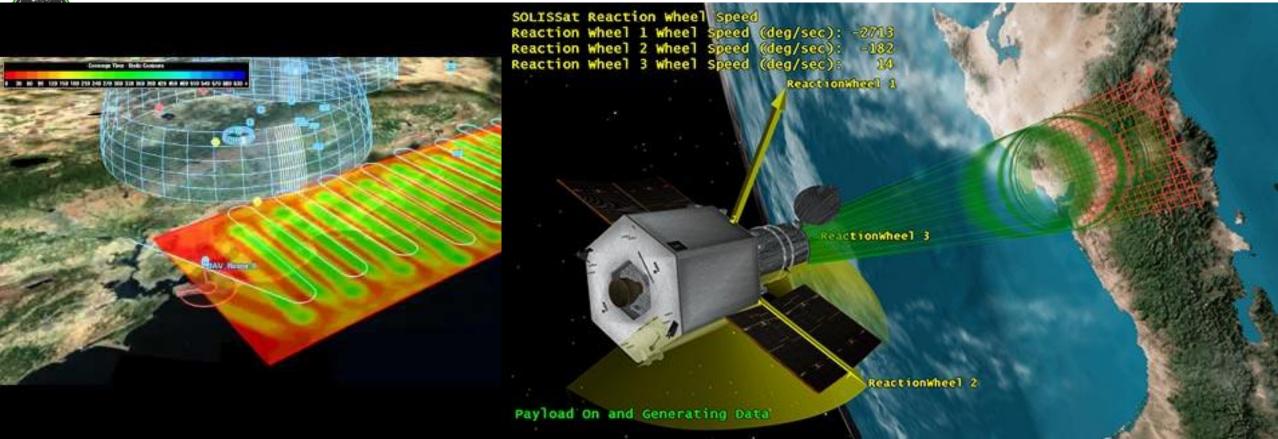




#### **Concept Simulation**

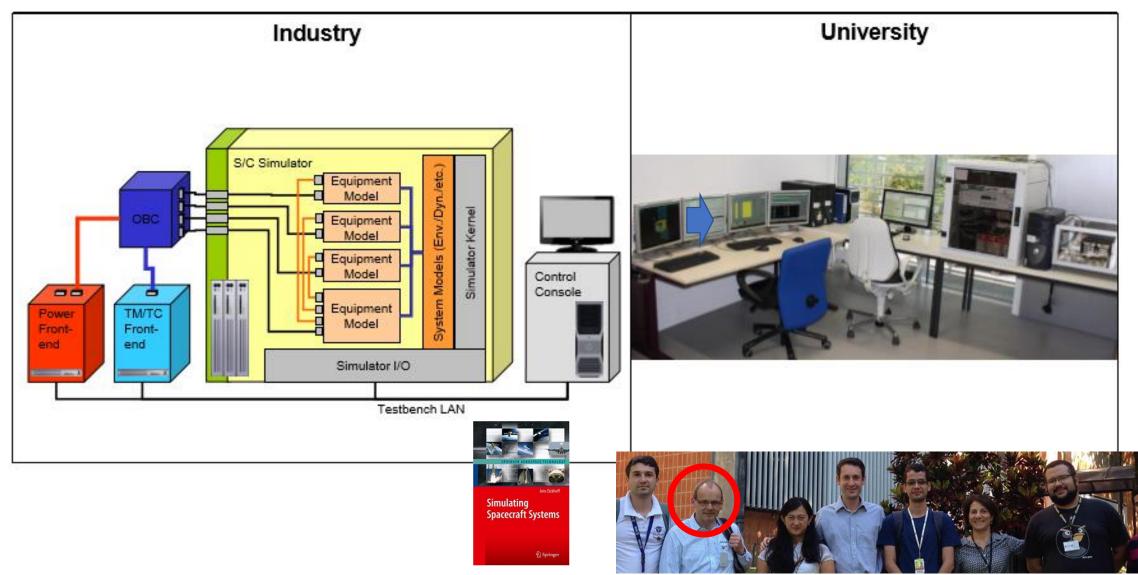





#### Mission Analysis Simulation

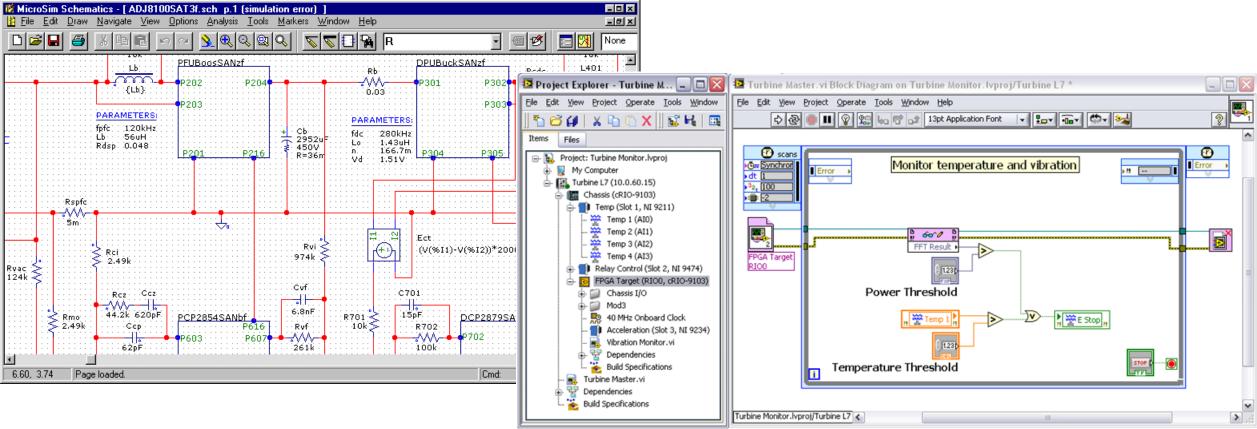


Satellite Simulator for Verification of Mission Operational Concepts in Pre-Phase A Studies Ronan A. J. Chagas, Arcélio C. Louro, Fabiano L. de Sousa, Willer G. dos Santos



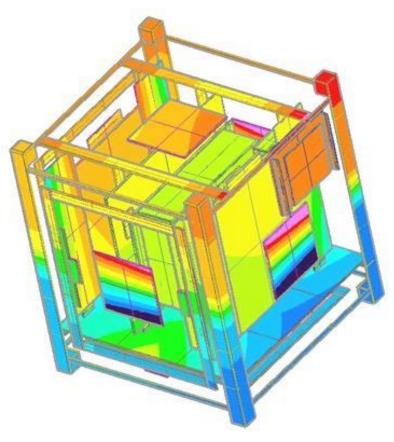

#### **Mission Performance Simulation**

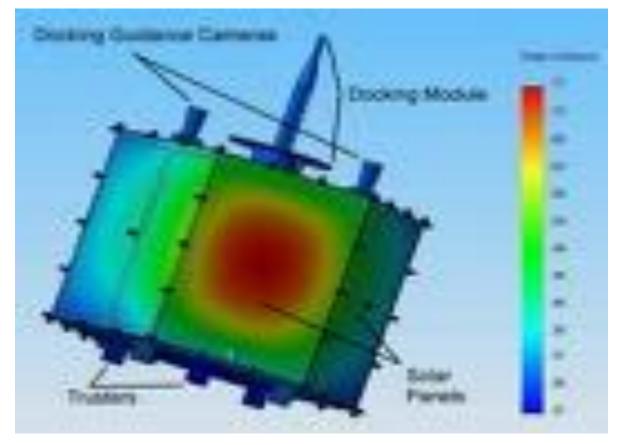





#### Real Time Simulation

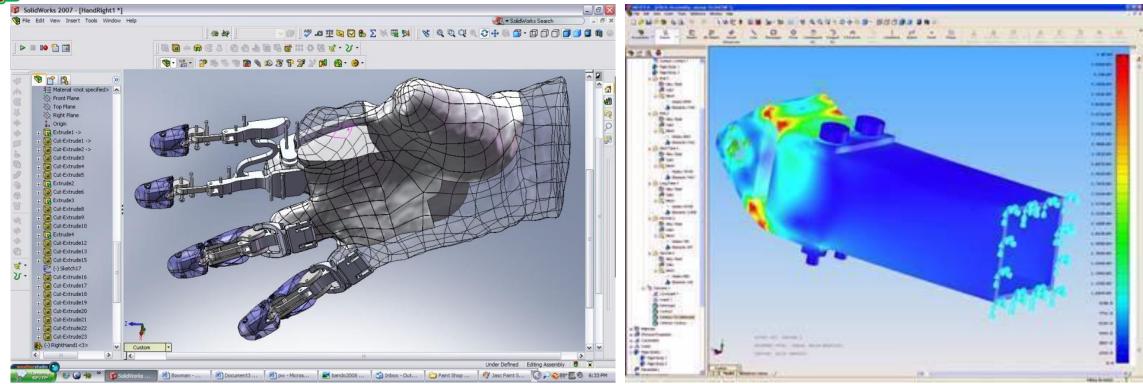






#### **Electrical Simulation**





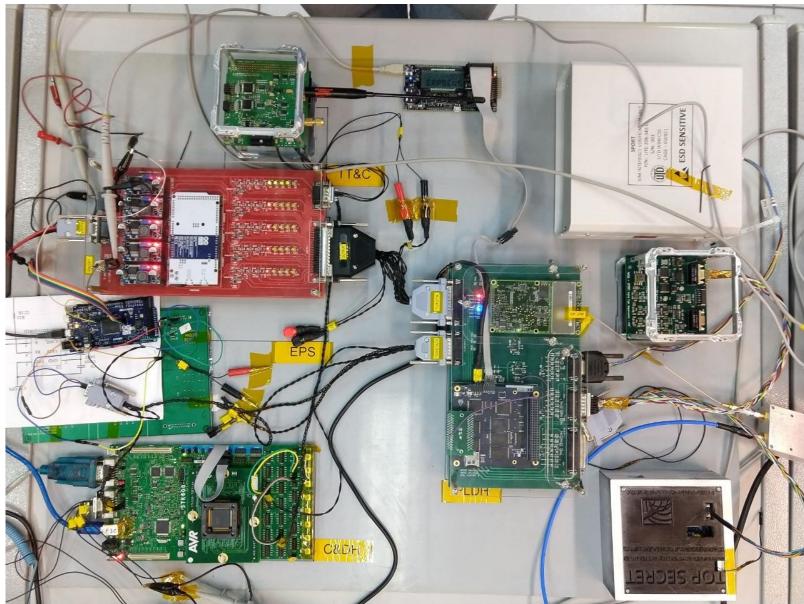

#### Thermal Simulation







#### **Mechanical Simulation**









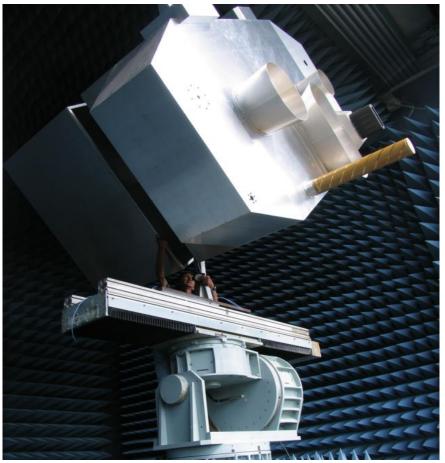

#### SPORT's FLATSAT



# Physical Simulator: Thermal Models Modelo Térmico de satélite japonês Modelo Termo-estrutural do CBERS-2B







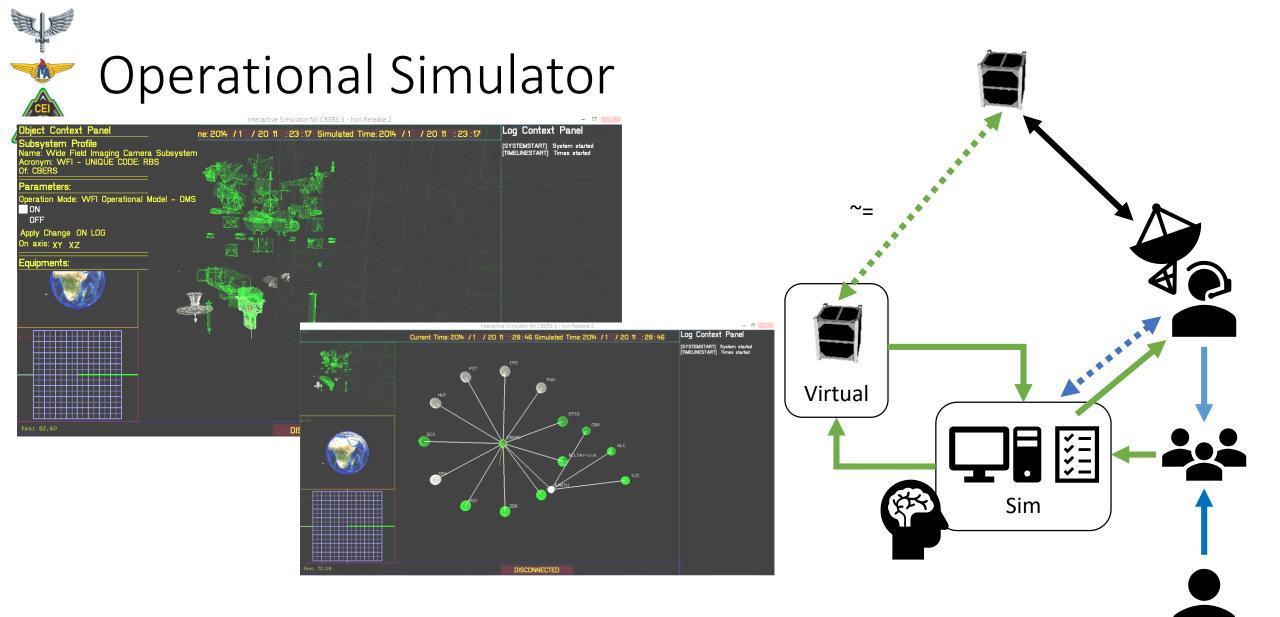





## Physical Simulators: Radio Models

Modelo RADIOELÉTRICO do CBER-3

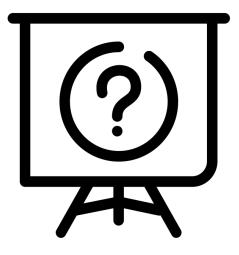







Simula a transmissão e recepção de sinais em RF dos satélites SCD-1 e SCD-2, para teste das antenas das estações terrenas.

# Physical: Structure Model






Ref.: Larry B. Rainey - Space Modeling and Simulation – roles and applications throughout the System Life Cycle. 2004.



# How do we tie requirements with the verifications?





# DVM – Design Verification Matrix



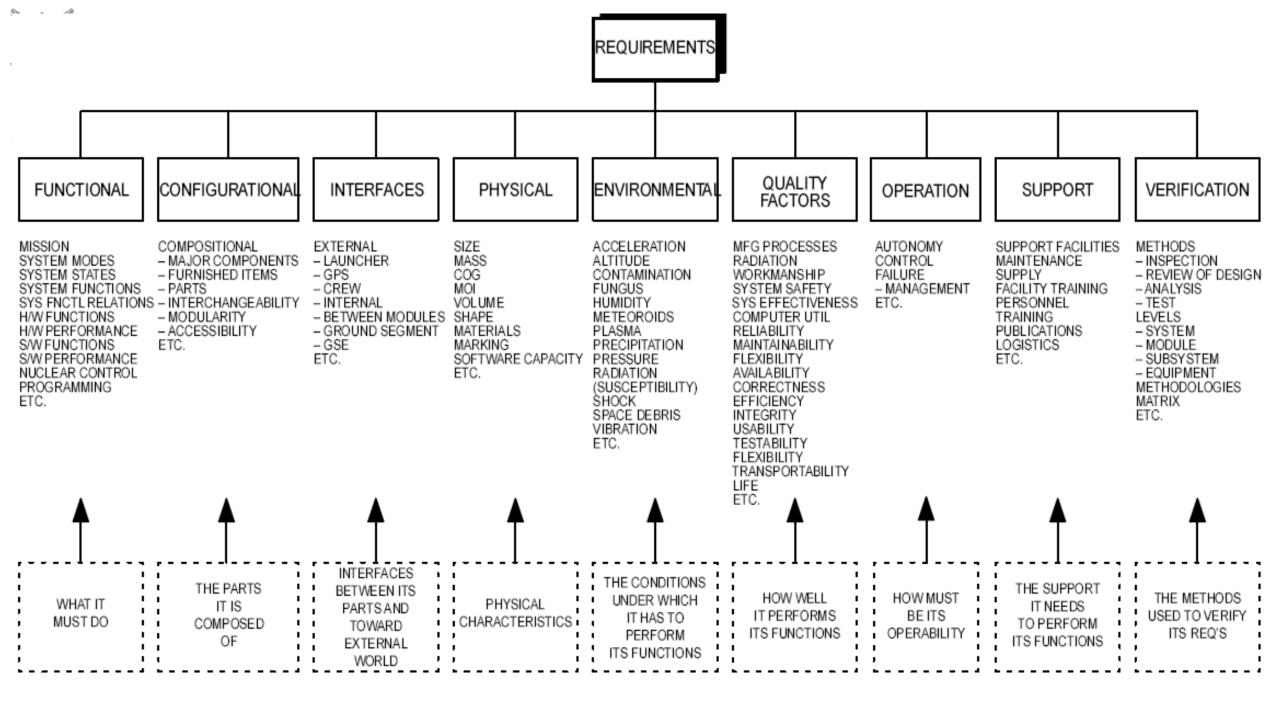
## PROJECT REQUIREMENTS

- As a basis for the verification process, mandatory technical requirements shall be properly specified for each product.
- The requirements shall be:
  - generated and allocated top-down at the
  - different project levels in order to form a tree of
  - Technical Specifications and Interface Control Documents containing consistent
    - performance,
    - design,
    - interface,
    - environmental,
    - operational and
    - support requirements.



#### Requirement Genaration

- Space System requirements are typically identified and grouped in relationship to their primary objective in specifying the system.
- When space system requirements are generated consideration shall be given to:
  - the system's functional objectives, its characteristics and interfaces,
  - the environmental conditions under which it will perform,
  - the quality and operational factors,
  - the necessary support and
  - the verification aspects, this providing
  - operational, functional and physical views of the system and its constituents.




#### Requirement Attributes

• In order to facilitate the verification implementation in terms of planning, execution, control and reporting, the requirement generation and allocation activity shall ensure specific requirements characteristics. Each requirement shall be:

#### • traceable;

- unique and associated to a proper identifier (for instance a document and sub clause number;
- single and not a combination of several requirements;
- verifiable using one or more approved verification methods;
- unambiguous;
- referenced as necessary to other requirements (with applicable document and subclause identification) and should be associated with a specific title.



### Requirement Allocation - DVM

- The verification strategy shall be reflected in
  - a verification matrix which shows for all requirements
  - the selected verification methods for (how)
  - the different verification levels in (what)
  - the applicable verification stages. (when)

| Require-<br>ment No.                          | Document                                                        | Para-<br>graph                            | Shall<br>State-<br>ment                                                | Verifi-<br>cation<br>Success<br>Criteria   | Verifi-<br>cation<br>Method                                                                              | Facility or<br>Lab                                                                         | Phase <sup>a</sup>                                                                 | Accep-<br>tance<br>Require-<br>ment?                                                                                        | Preflight<br>Accep-<br>tance?                                                                                                                      | Perform-<br>ing Orga-<br>nization                                      | Results                                                                                                 |
|-----------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Unique iden-<br>tifier or each<br>requirement | Document<br>number the<br>requirement<br>is contained<br>within | Paragraph<br>number of the<br>requirement | Text (within<br>reason) of the<br>requirement,<br>i.e., the<br>"shall" | Success<br>criteria for the<br>requirement | Verification<br>method<br>for the<br>requirement<br>(analysis,<br>inspection,<br>demonstration,<br>test) | Facility or<br>laboratory<br>used to per-<br>form the ver-<br>ification and<br>validation. | Phase in<br>which the<br>verification<br>and valida-<br>tion will be<br>performed. | Indicate<br>whether this<br>requirement<br>is also ver-<br>ified during<br>initial accep-<br>tance testing<br>of each unit. | Indicate<br>whether this<br>requirement<br>is also ver-<br>ified during<br>any pre-flight<br>or recurring<br>acceptance<br>testing of<br>each unit | Organization<br>responsible<br>for per-<br>forming the<br>verification | Indicate<br>documents<br>that contain<br>the objective<br>evidence that<br>requirement<br>was satisfied |



#### **DVM ("Design Verification Matrix" ESA)**

| Ref.     | Requirement   | Stages | Verific | Verification MethodsSysSubEquT, AATT, AATI, RRIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |     |
|----------|---------------|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|          | Requirement   | Stuges | Sys     | Sub                                                                                                                                                                                         | Equ |
| x.1      | Requirement 1 | Qua    | Τ, Α    | Α                                                                                                                                                                                           | Т   |
| <b>^</b> | Requirement   | Acc    |         |                                                                                                                                                                                             | Т   |
|          |               | Qua    | I, R    | R                                                                                                                                                                                           | 1   |
| x.2      | Requirement 2 | Acc    | I.      |                                                                                                                                                                                             | 1   |
| A.2      | Nequilement 2 | Pre    | I.      |                                                                                                                                                                                             |     |
| Ì        |               | Orb    | Т       |                                                                                                                                                                                             |     |
|          |               |        |         |                                                                                                                                                                                             |     |
|          |               |        |         |                                                                                                                                                                                             |     |
|          |               |        |         |                                                                                                                                                                                             |     |
|          |               |        |         |                                                                                                                                                                                             |     |
|          |               |        |         |                                                                                                                                                                                             |     |
|          |               |        |         |                                                                                                                                                                                             |     |

#### Verification Stages:

- Qua Qualification stage
- Acc Acceptance stage
- Pre Pre-Launch stage
- Orb In Orbit stage

#### Verification Method

- T Test
- A Analysis
- I Inspection
- R Review of Design

#### Verification Levels

- Sys System
- Sub Subsystem
- Equ Equipment



#### **DVM ("Design Verification Matrix" NASA)**

. Specification Requirements, Compliance, and Verifications (By Spec #)

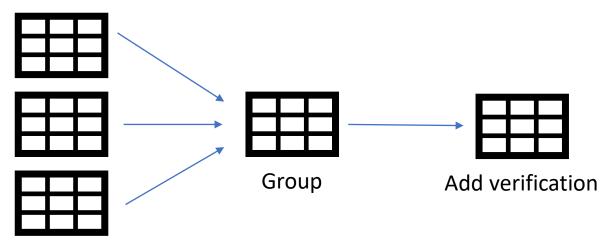
Space Flight Systems

| 6149-EP0001-01 Requirement  |                       |                                                                                                                                                                                                                   |                                                                                                                                                                          | Met                                                                                                                  | hods   | Verification Last M |                                        |      | Last Modified |            |
|-----------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------|---------------------|----------------------------------------|------|---------------|------------|
| Paragraph Title Requirement |                       | Verification Methodology                                                                                                                                                                                          | Qual Acc                                                                                                                                                                 |                                                                                                                      | # Name |                     | Туре                                   | Date | By            |            |
| r an aigh air air           | 1100                  | requirement                                                                                                                                                                                                       | Consention Methodology                                                                                                                                                   | Anu,                                                                                                                 | Acc    | ."                  | . THERE                                | Tibe | 2-110         | 2,         |
| 3.1.1.1                     | Physical Interfaces   | The ExPCA shall provide<br>interfaces for its installation<br>on and its removal from the<br>EXPRESS Pallet via the CFE<br>ExPA through extravehicular<br>activity (EVA) and<br>extravehicular robotics (EVR).    | Inspection of data from<br>Bosing pertaining to the CFE<br>ExPA will verify EVA and<br>EVR attachment<br>requirements as specified in<br>SSP 52055.                      | I                                                                                                                    | 1      | 190                 | BFG Inspection: Check<br>to ID drawing | I    |               |            |
| 3.1.1.2                     | Electrical Interfaces | All electrical interfaces shall<br>be through SSQ 22680 type<br>connectors located on the<br>ExPCA.                                                                                                               | Inspection of connectors will<br>verify SSQ22680 type, unless<br>otherwise specified and<br>approved.                                                                    | I                                                                                                                    | I      | 190                 | BFG Inspection: Check<br>to ID drawing | I    | 2000-07-27    | Mark Hyman |
| 3.1.1.2.1 [1]               | Power Inputs          | two (2) power inputs (MAIN inspect<br>and AUXILIARY) of 120 drawing<br>vdc, 25 amperes (A) each provide<br>from the Umbilical two 120<br>Mechanism Assembly (UMA) present<br>on the International Space will pro- | Review of schematics,<br>inspection to the BFG ID                                                                                                                        | I, A,T                                                                                                               | I,T    | 190                 | BFG Inspection: Check<br>to ID drawing | I    | 2000-07-27    | Mark Hyman |
|                             |                       |                                                                                                                                                                                                                   | drawings and the WCA will<br>provide visual verification of<br>two 120V, 25 A inputs as<br>present. The QTP and ATP<br>will provide test verification<br>of these inputs |                                                                                                                      |        | 191                 | Analysis via WCA test<br>via STE       | A    |               |            |
| 3.1.1.2.1 [2]               |                       | The ExPCA shall [2] have a<br>third power input (STAY                                                                                                                                                             | Inspection of schematics, AU<br>and ExPCA ID drawings will                                                                                                               | de verification of 28V<br>er input. The WCA<br>des the analytical<br>liance. Formal QTP and<br>will provide the test | т і,т  | 190                 | BFG Inspection: Check<br>to ID drawing | I    | 2000-07-27    | Mark Hyman |
|                             |                       | ALIVE) of 28 vdc, 5 A<br>(TBR) while the ExPCA is in<br>the Orbiter cargo bay.                                                                                                                                    | provide verification of 28V<br>Orbiter input. The WCA<br>provides the analytical<br>compliance. Formal QTP and<br>ATP will provide the test<br>compliance                |                                                                                                                      |        | 191                 | Analysis via WCA test<br>via STE       | A    | 2000-07-27    | Mark Hyman |

# How we do here... And how you will do! igodot

- 1. Req # // Title Requirement // Requirement Text // Rationale // Level
- 2. Verification Method
- 3. Verification Success Criteria
- 4. V&V Phase (Project Phase and Models) column shows the Project Phase or/and Models when the requirement is checked.
- 5. V&V Documents (Procedures, Reports, Certificates, ...) column shows the reference documents describing the V&V Activities, Facilities, Objectives, Methods, Results and other documents for respective "Verification Method" column.
- V&V Compliance (Status and Justifications) column shows the V&V Acceptance Requirement Status and respective Justifications if necessary.




# CLASS ENDING



#### Assignments

#### • [PRD-003] – Revised Requiremens

- Get the Requirements
- Add the Verication Method & Verification Success Criteria
- Review / Reorganize in one spreadsheet adding the levels
- Indicate which Subsystem will be involved (Lead / Secundaries) in subsystem level



Grading Criteria:

- 1. Coherent Method x Success
- 2. Level Reorganization
- Reading of the function and indicates the target subsystem in subsystem level (xx xx)
- 4. Suggestions for rewriting requirements, to be verifiable

**Raw Requirements**